

User’s Guide
TDCompress™

Copyright  2001 by bTrade, Inc.

All Rights Reserved.

Printed in the USA

Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in any data base or retrieval system, without the
prior written permission of bTrade, Inc.

For additional information, contact:

bTrade, Inc.
2324 Gateway Drive
Irving, Texas 75063
800-425-0444
or by e-mail:
support@btrade.com

Table of Contents

CONTACTING US ... 1-1
Technical Support ...1-1
Technical Support Call Checklist...1-2

INTRODUCTION... 1-5
Why You Should Use TDCompress..1-5
TDCompress Features and Options...1-5

TDCompress Extended Security Option...1-5
Master or Distribution License...1-6

TDCompress Features..1-6
Operating Environments..1-7

CHAPTER 1: BEFORE YOU BEGIN .. 1-8
Considerations...1-8

ASCII-to-EBCDIC Translation..1-8
Handling Carriage Return/Line Feed Pairs ..1-8
Transferring Files Across Platforms ..1-9
File Formats and Names ..1-9

Upgrading to New Versions of TDCompress..1-9
Upgrading From Previous Versions..1-10

Comm-Press 3.4.x and 4.4.x Migration Gu ide ..1-10
Secret Key Values...1-10
Secret Keys with Initialization Vectors...1-11

CHAPTER 2: SECURING DATA USING TDCOMPRESS...2-12
Execution Options for TDCompress Security Processing...2-12
Extended Security Option Overview...2-14
Overview of Secret Key Encryption..2-15
An Overview of Public/Private Key Encryption...2-15
Using Public/Private Key Technology to Encrypt Data...2-16

Digital Signatures and Authentication..2-17
Filtering ..2-17

Encrypting Data with TDCompress...2-18
Specifying the Secret Key and Initialization Vector...2-18
Supplying the Key and IV on the Command Line ..2-18
Supplying the Key and IV in a File ...2-19

CHAPTER 3: COMPRESS AND DECOMP OPTIONS..3-20
Compress Options...3-21

Common ...3-21
TDCompress Extended Security Options...3-22

Decompress Options..3-22
Common ...3-22
TDCompress Extended Security Option...3-23

Compress/Decompress Option Descriptions..3-24

CHAPTER 4: KEY GENERATION AND TDMANAGER RUN-TIME FILES (TDCOMPRESS
EXTENDED SECURITY OPTION)..4-32

RSA Key Generation..4-32
TDManager Run-time Files ..4-33

The Certificate Run-time File ...4-33
The Private Key Run-time File ...4-33
The Symmetric Key Run-time File ..4-34
The Lookup Table Run-time File ...4-34
The Participant Table Run-time File ...4-35

CHAPTER 5: SECFILE KEYWORDS BY PLATFORM...5-36
MVS ..5-36

SECFILE Keywords for Data with User-Defined Headers ...5-36
SECFILE Keywords for Data with No Headers..5-38
MVS Example for Securing Non-EDI Data...5-38

PC ..5-39
SECFILE Keywords for Data with User-Defined Headers ...5-39
SECFILE Keywords for Data with No Headers..5-40
PC Example for Securing Non-EDI Data...5-41

CHAPTER 6: MVS PLATFORM...6-42
MVS Installation...6-42

Using a diskette or CD-ROM ...6-42
Using a 3480 tape cartridge...6-43
Binding the DB2 Plan (Extended Security Option)..6-43

Installing the TDManager Run-time Files ..6-44
Using IMPORT on MVS...6-44

Mainframe Operation...6-44
Compressing on the Mainframe ...6-45
Decompressing on the Mainframe ...6-46
Using ARCHIVE with DECOMP..6-48
Using Dynamic Allocation with DECOMP...6-48
Modifying the Default Translation Tables at Run Time ..6-50

Using GENKEYS on MVS ...6-53
Securing Formatted EDI Data ..6-53

MVS Example for Securing Formatted EDI Data ..6-53
Unsecuring Formatted EDI Data..6-54

MVS Example for Unsecuring Formatted EDI Data..6-54
Securing Non-EDI Data...6-54

Unsecuring Non-EDI Data ..6-55
MVS Example for Unsecuring Non-EDI Data ..6-55

Compressing Mainframe Files..6-55
Modifying the Default Translation Tables ...6-56

CHAPTER 7: VMS PLATFORM...7-58
Installation..7-58

TK7..7-58
Disk ...7-58

VMS Operation ...7-59
Compressing on VMS..7-60
Decompressing on VMS..7-61
VMS Examples ...7-61

CHAPTER 8: WINDOWS 95/98/NT PLATFORMS ..8-63
Installation..8-63

Diskette or CD...8-63
Installing the TDManager Run-time Files ..8-63

Using IMPORT on Windows 95/98/NT ...8-63

PC Operation ...8-64
Compressing on the PC (DOS, OS/2 and Windows)..8-65
Decompressing on the PC (DOS, OS/2 and Windows)...8-66
PC Compression/Decompression Examples ..8-67

Compressing PC/Workstation Files...8-68
Using GENKEYS On Windows 95/98/NT ..8-68

Input to GENKEYS ..8-69
Output from GENKEYS..8-70

Securing Formatted EDI Data ..8-70
PC Example for Securing Formatted EDI Data...8-70

Unsecuring Formatted EDI Data..8-71
PC Example using ARCHIVE with Secure Formatted EDI Data ..8-71
PC Example for Unsecuring Formatted EDI Data ..8-71
Securing Non-EDI Data...8-72

Unsecuring Non-EDI Data ..8-72
PC Example for Unsecuring Non-EDI Data ..8-72

Compressing EDI-Formatted Data ..8-73

CHAPTER 9: UNIX/AIX PLATFORM..9-74
Installation..9-74

Diskette/Tape...9-74
Installing the TDManager Run-time Files ..9-75

Using IMPORT on UNIX ...9-75
UNIX Operation..9-76

Compressing on UNIX/AIX ...9-77
Decompressing on UNIX/AIX...9-77
UNIX/AIX Examples...9-78

Using GENKEYS on UNIX ...9-79
Input to GENKEYS ..9-81
Output from GENKEYS..9-81

CHAPTER 10: OS/400 PLATFORM...10-82
Installation... 10-82

Diskette.. 10-82
Tape.. 10-82

Installing the TDManager Run-time Files ... 10-83
Using IMPORT on OS/400 .. 10-83

AS/400 Operation .. 10-83
Compressing on the AS/400 .. 10-84
Decompressing on the AS/400 .. 10-85

Using GENKEYS on OS/400 .. 10-86
Modifying the Default Translation Tables .. 10-88

APPENDIX A ...10-89
Using API (Extended Security Option).. 10-89
Using the Command-Line API (COMPRESS and DECOMP) ... 10-89
Using the Interactive API (compprog and dcmpprog) .. 10-90

The Interactive API Conversation... 10-91
Ending the Conversation .. 10-92

APPENDIX B ..10-93
Technical Notes.. 10-93

APPENDIX C ...10-95
Error Messages and Codes... 10-95
COMPRESS and DECOMP Error Messages and Codes.. 10-95

Secondary Messages/Return Codes..10-108
AUTACK Error Codes ...10-109

Additional API Error Codes...10-112
BSAFE Return Codes ...10-112

APPENDIX D .. 10-117
Support CCA ..10-117
Overview...10-117
Prerequisites..10-117
Operation...10-117

GLOSSARY OF TERMS ... 10-118

INDEX ... 122

TDCompress User Guide

 1-1

Contacting Us

Technical Support
Customer Services is available 24 hours a day, seven days a week,
based on the following criteria:
§ Prime Support Hours — 7 a.m. – 6 p.m. (CST) Monday through Friday.

o Customer Service Representatives are available to answer your calls and
assist you with a comprehensive range of services during these hours.

§ After Hours Support — Available any time outside the prime support hours,
including nights, weekends, and holidays. Representatives are on-call to
respond to the Severity 1 issues that cannot wait for the next business day.

o 800-425-0444 for customers in North America.

o 972-580-2900 for customers outside of North America.

TDCompress User Guide

 1-2

Technical Support Call Checklist
Before contacting Technical Support please fill out the information
below. Send this information and the Pre-Installation Worksheet to
Technical Support concerning issues. If an error occurs and there is a
need to contact Technical Support, please have the following
information and the Pre-installation worksheet available. For more in-
depth issues, send the information collected to support@btrade.com.

Contact Information:

Company Name: _____________________________________

Company Address1: _____________________________________

Company Address2: _____________________________________

Contact Name: _____________________________________

Contact Primary Phone: _____________________________________

Contact Secondary Phone: _____________________________________

Contact e-mail address: _____________________________________

Product:

TDAccess v1.x
TDAccess v2.x
TDManager
TDServer

Platform:

Intel-based
Windows2000
WindowsXP
WindowsNT
Windows98

UNIX
HP-UX
AIX
SUN

Mainframe
MVS – OS/390
AS400

TDCompress User Guide

 1-3

License Type:
Trial
License
Sponsor

Hub Trading Partner: ______________________________________

Symptoms (Provide a detailed description):

Severity (1, 2, 3, or 4): Sev 1 Sev 2 Sev 3 Sev 4
(1 = Critical, 2 = Production affected, 3 = Configuration or setup, 4 = General question)

Configuration files:
Tdclient.ini
Tdserver.cfg
Tdmanager.ini

Logs gathered:

eacomm.log
eaxfer.log
ea2k.log
TDServer log file

Other Logs gathered:
firewall
snoop
intrusion detection
other

Diagnostics used:

ping
tracert
generic ftp

TDCompress User Guide

 1-4

Has the hub been contacted?
Is hub involved? Yes No

Hub contact name: _____________________________________

Hub contact number: _____________________________________

Hub contact e-mail address: _________________________________

Documentation:

1. What is the product and release version and list of products being used?

2. Has this been working and just failed or is this a new setup?
Yes or No

3. Type of connectivity i.e., dialup, SSL, ftp

4. Open the tdaccess.ini, which is located in the root of TDClient directory with a text
editor. A point to express is to make sure that the GUI interface is closed when
performing this change. Once the tdaccess.ini is open locate the [IDENTIFY] section
and make the following changes:

LOG_INI=-6
LOG_XFER=-6
LOG_FTP=-6
LOG_EASYACC=-6

When those changes have been completed, save the file; open the GUI and run a
transfer. Once the transfer is complete the following logs will be created in the
following directories these are the files that need to be requested from the Trading
Partner.

· ea2k.log (Located in the tdclient root directory)
· eaini.log (Located in the tdclient root directory)
· eaxfer.log (Located in the tdclient temp directory)
· eacomm.log (Located in the tdclient temp directory)
· list.fil (Located in the tdclient temp directory)
· tmplist.fil (Located in the tdclient temp directory)
· decomp.log (Located in the tdclient temp directory)

Once Technical Support obtains these logs, it will provide all the information required
to evaluate the transaction for its failure.

TDCompress User Guide

 1-5

Introduction
TDCompress is a set of utilities that allows you to compress, encrypt, authenticate and assure data files
for cross-platform file trans fers over public and private networks. Cross-platform means that data can be
compressed and secured on one type of computer, for instance an IBM mainframe running MVS and then
be decompressed and unsecured on a different type of computer, such as a PC running Windows 95.
TDCompress takes care of the differences in data formatting between different computer systems by
executing the utilities independently of the communication network products, hardware, and operating
systems in use. Details on all execution parameters as well as coding programs that invoke the
application programming interface (API), are given in the appropriate user guide sections.

Why You Should Use TDCompress
TDCompress can dramatically cut both the expense and time associated with bulk data transfer. Using
state-of-the-art data compression techniques, the size of the data files are reduced by as much as 95
percent. Encryption is provided for secure data transmission.

The compressed data can be transmitted and decompressed between different computing platforms,
including mainframes, AS/400s, AIX/UNIX-based systems, and PCs.

Since the compression and decompression takes place off-line, TDCompress is not dependent on any
particular communications hardware, soft ware, or protocol.

Used in conjunction with the TDManager product, TDCompress provides
state-of-the-art public key technology for encrypting and authenticating data.
TDCompress is also interoperable with legacy security products such as Dataguard from Sterling
Software.

TDCompress Features and Options

TDCompress Extended Security Option
TDCompress Extended Security Option utilities provide advanced functions for handling public/private
key pairs and certificates from Certificate Authorities (CA). Public/private keys may be created by the
Extended Security Option utilities so that only the public component is provided to the CA for certification.
The Extended Security Option utilities support EDI and EDIFACT standard formats, as well as custom
requirements. The current software version numbers are 4.n.n. The version number is displayed in the
compress.log or decomp.log when the utilities are executed. An example is Version 4.4.2 *i*.

TDCompress User Guide

 1-6

Master or Distribution License
TDCompress provides Master and Distribution licenses. The Master license utilities are unrestricted with
regard to both COMPRESS or DECOMP. DECOMP processes data that is compressed/encrypted with either a

Master or Distribution licensed product. The Distribution license utilities are unrestricted with regard to
COMPRESS. DECOMP is restricted to process only data that is compressed/encrypted with a Master

licensed product.

To determine which type of license the product has, refer to the TDCompress Readme file.

TDCompress Features
Some of the features of TDCompress are:

• Multiple files can be compressed into a single file for transmission. Decompression splits the data
back into separate files.

• The ability to compress and decompress X12, EDIFACT, UN/TDI, and UCS EDI data. The EDI
envelope records are left in the clear to allow routing through a value-added network (VAN).

• State-of-the-art RSA public key technology for encryption and digital signatures. DES, Triple DES,
and RC2 algorithms are used for bulk data encryption.

• Built-in options that allow cross-platform data interoperability, for example ASCII/EBCDIC
translation and handling of record delimiters.

• An application programming interface (API) that helps the user to precisely control
compression/decompression.

• Support for MVS partitioned datasets (PDSs).

TDCompress User Guide

 1-7

Operating Environments
TDCompress compression and decompression programs are compatible with these operating systems:

TDCompress Operating Systems

IBM Mainframes Midrange PCs
OS/390 AIX 4.1 and higher DOS 6.0
MVS/ESA (with LE/370 1.5) DECUNIX OS/2 Warp
 DEC OpenVMS 7.1 Windows 3.1
 HPUX 10.01 and higher Windows 95/98
 OS/400 V3R7 and higher Windows NT 4.0
 SCO Open Server Windows2000
 SUN Solaris 2.6 WindowsXP

TDCompress processing options and programming interface provide flexibility for use in specialized file
transfer environments.

TDCompress User Guide

 - 1-8 -

Chapter 1: Before You Begin

Considerations
Issues to consider when performing cross-platform compression and security are the differences by which
each machine stores and interprets data. This requires highly flexible compression software.
TDCompress meets this need by providing several run-time options for compressing and decompressing
data, as well as providing an API that allows the user to control the compression/decompression process.
Additonal concerns are detailed below.

ASCII-to-EBCDIC Translation
An obvious concern when transferring data between mainframes and workstations is the need to translate
between the EBCDIC and ASCII character sets. TDCompress performs this translation when the ASCII
run-time option is specified during compression. Although this option is valid for the mainframe, AS/400,
and workstation compression programs, the actual translation takes place only when data is compressed
or decompressed on the mainframe or AS/400 (for example, the EBCDIC machine). TDCompress uses
the same ASCII-to-EBCDIC translation table as the IBM expEDIte/PC product. The translation table can
be customized at run time (see “Compressing on the Mainframe” on page 6-45 or “Decompressing on the
Mainframe” on page 6-46).

Handling Carriage Return/Line Feed Pairs
The CRLF run-time option is required in most cases to compensate for the differences in how records are

stored on various computing platforms. MVS, OS/400, and VMS use highly structured, record-oriented
I/O. Each record has a definite length that is either stored at the beginning of the record (variable-length
records) or is contained in the definition of the file itself (fixed-length records). The various access
methods use this information to read and write data one record at a time.

PC and UNIX workstations do not implement this record-oriented I/O. Files are processed as a
continuous stream of bytes. The workstation leaves it up to the program to interpret the data as it sees fit.
Sometimes a program is written so that it processes data in records of a fixed number of bytes. The
program simply separates the data into fixed-length blocks for processing. More commonly, records on a
DOS or OS/2 workstation are delimited by a carriage return/line feed combination of bytes (x'0D0A').
UNIX workstations use a line feed (x'0A') as the delimiter. This permits programs (and users) to determine
where records end as well as to have variable-length records. High-level languages such as BASIC and
C provide functions that read and write delimited data.

TDCompress User Guide

 - 1-9 -

The user must know whether delimiters are present, or are needed, in the data that is compressed. When
compressing data on the mainframe, the CRLF option adds a record separator character to the end of
each record, which is replaced by the appropriate delimiter(s) when the data is decompressed on the
workstation. When compressing data on the workstation, the CRLF option replaces the delimiters by a

record separator character, which is used to write records of the correct length when the data is
decompressed on the mainframe.

Transferring Files Across Platforms
Text files compressed on an EBCDIC platform (MVS or AS/400) which are to be decompressed on an
ASCII platform (UNIX or Windows) must be compressed with the ASCII and CRLF option and transmitted
in binary mode by FTP. Binary files compressed with the FILTER option may be transmitted in either

binary or ASCII mode.

File Formats and Names
Another major difference between mainframes and workstations is the way files are structured and
named. Sequential files on the mainframe can have names that are up to 44 characters in length.
Mainframe files can also be stored as members of a partitioned data set (PDS), with each member name
being up to eight characters long. The directory and file structure on a workstation is most analogous to a
partitioned data set on the mainframe. A directory can be thought of as a PDS and each file in a directory
can be thought of as a member. However, workstations allow more than eight characters for the file
name. On the mainframe, file names are usually provided via Job Control Language (JCL) when a
program is executed in batch. The workstation usually gets its file names from data entered at the
command line or interactively by the user. TDCompress provides several methods for handling the
different file structures and naming schemes. Each method is implemented via a combination of
execution parameters and a possible user-supplied program. Various scenarios are discussed below.

Upgrading to New Versions of TDCompress
Later releases of TDCompress can be used to decompress data compressed with an earlier release.
However, data that is compressed using a later release cannot be decompressed using an earlier release
of TDCompress. In other words, the DECOMP programs are downward compatible, but the COMPRESS

programs are not.

The suggested method for software installation, after thoroughly testing the new release, is given below:

1. Install the new DECOMP program at the mainframe or central site.

TDCompress User Guide

 - 1-10 -

2. Distribute the new COMPRESS or DECOMP programs to all remote sites (the new DECOMP
programs can decompress data received from both the old and the new COMPRESS programs
during the rollout period).

3. Use the COMPRESS version number printed for each decompressed segment in the
Decompression Report to verify that all remote sites have installed the new COMPRESS or
DECOMP programs.

4. Finally, install the new COMPRESS program at the mainframe or central site.

Upgrading From Previous Versions

Comm-Press 3.4.x and 4.4.x Migration Guide
Comm-Press 3.4.x and 4.4.x users need to be aware of the following compatibility issues with 3.0.1.

Secret Key Values
In 3.0.1, secret key values were entered as text on all platforms. For example, if the secret key was
"MYSECRET" on MVS (an EBCDIC platform), it was also "MYSECRET" on a UNIX (ASCII) platform.
While the text value is the same on each platform, the hexadecimal value is different.

M Y S E C R E T M Y S E C R E T

4D 59 53 45 43 52 45 54 D4 E8 E2 C5 C3 D9 C5 E3

 Hexadecimal Values on an ASCII Platform Hexadecimal Values on an EBCDIC Platform

In order to allow for a larger set of secret keys, all keys in 3.4.x and 4.4.x are entered in hexadecimal
format. This means that for the key shown above, either the hexadecimal values associated with the
ASCII or EBCDIC key must be used on all platforms. If the key "MYSECRET" is used on an EBCDIC
platform to encrypt data, the hexadecimal key value D4E8E2C5C3D9C5E3 must be used on ASCII
platforms to decrypt the data.

TDCompress User Guide

 - 1-11 -

3.4.x and 4.4.x users need to be aware that 3.0.1 versions of Comm-Press running on a ASCII platform
translate all key values from ASCII to EBCDIC before attempting to decrypt data. This means that on an
ASCII platform you must compress data with 3.4.1 or 4.4.1 using the hexadecimal key value
D4E8E2C5C3D9C5E3 in order for the data to be decrypted with the key "MYSECRET" by 3.0.1 on any
platform. If you take advantage of the larger key set in 3.4.x or 4.4.x by entering keys in hexadecimal,
3.0.1 users will be less likely to decrypt the data successfully.

Secret Keys with Initialization Vectors
Secret keys in 3.4.x and 4.4.x are entered with an initialization vector to improve the randomness of the
encryption. Version 3.0.1 does not support an initialization vector. If you want to encrypt data with 3.4.x or
4.4.x that is to be decrypted by 3.0.1, you must set the initialization vector of the secret key (bytes 25-32)
to hexadecimal zeros (0000000000000000).

SECURE

EDI data secured using the SECURE option in 4.4.x cannot be processed by 4.0.1.

ENCRYPT

3.4.x and 4.4.x does not support this proprietary encryption option. DES or DE3 should be used in its
place. Decomp returns a return code of 52 if this option is used to encrypt a file in version 3.0.1 or 4.0.1.
Compress returns a return code of 52 if this option is specified on a command line or in JCL.

SAVEMODE

Data compressed with the parameter SAVEMODE cannot be decompressed by 3.0.1.

User Exits

User exits are no longer supported in 3.4.x or 4.4.x. Use the enhanced TDCompress API to include the
compression and encryption features into your custom applications

TDCompress User Guide

 - 2-12 -

Chapter 2: Securing Data Using
TDCompress

TDCompress adheres to the ASC X12.58 subcommittee standards for applying security to X12-formatted
EDI data. SxS and SxE segments are added to the EDI envelopes to carry bulk encryption/decryption
information. SxA and SVA segments carry digital signature information. During
decryption/decompression, the segments are removed from the data. SxA/SVA segments are ret ained if
the KEEPSIGS execution option is specified.

For non-EDI data, TDCompress uses the S1S/S1E and S1A/SVA segments to carry encryption and
digital signature information. As with EDI data, the segments are removed during
decryption/decompression, unless the KEEPSIGS option is specified to retain the digital signature
segments.

TDCompress writes security activity messages to log files. On the workstation, the log files are named
compress.log and decomp.log. The logs are written to the current directory unless the LOGPATH

command-line option or environment variable is set to a different directory. The AS/400 log files are
named COMPLOG and DCMPLOG and are written to the current library. The LOGPATH command-line option
can specify a different library. On MVS, the logs are written to the data sets defined via the COMPLOG and
DCMPLOG DD statements. Each bulk encryption/decryption function and each digital signature function is

logged. Errors are also logged.

Execution Options for TDCompress Security Processing
TDCompress security processing is invoked by specifying the SECURE or SECUREONLY execution
options. The security functions applied to the data are determined by the relationship records contained in
the lookup run-time table. These relationships are defined by the TDManager Administrator. Other
options may be specified to format the secured data for transmission or to provide lookup information for
non-EDI data.

TDCompress Execution Options:

ARCHIVE This DECOMP option is used to preserve specific information regarding an
authenticated file. The information is stored in dynamically allocated files containing
the input file information, and in the decomp.log. When using the ARCHIVE option,

care must be taken to capture the information into a permanent location for later use.

EDI This option is required when X12 or EDIFACT data is secured or unsecured. You
must specify this option for both COMPRESS and DECOMP.

TDCompress User Guide

 - 2-13 -

DELIMIT[=n] The COMPRESS option causes the secured data to be delimited every n characters.

The default for n is 40. This option may be required when transmitting secured data
as a text file. It forces the FILTER option to be used if data is encrypted or

compressed.

KEEPSIGS This DECOMP option causes digital signature segments to be left in the unsecured
data. The segments are normally removed from the data during decompression.

LOGPATH= This option supplies the path (or AS/400 library) where COMPRESS and DECOMP write
their log files. Workstation users can set the LOGPATH environment variable rather
than use this option. If LOGPATH is not set, then the log files are written to the current

directory.

RECEIVER= This COMPRESS option can be used when non-EDI data is secured. It provides the
value of the RECEIVER used to access the lookup run-time table. The SENDER=

option must also be specified.

RUNTIMEPATH= This option supplies the path (or AS/400 library) where COMPRESS and DECOMP can
find the TDManager run-time files. Workstation users can set the RUNTIMEPATH
environment variable rather than use this option. If RUNTIMEPATH is not set, then the

run-time files must be in the current directory.

SECFILE This COMPRESS option may be used when securing non-EDI data. It identifies a file

that contains statements defining user-supplied header records in the non-EDI data.
TDCompress uses the header records to get the SENDER, RECEIVER, and TRANSID
values used to access the lookup table. If the non-EDI data does not contain header
records, then the SECFILE can provide the actual values for the SENDER, RECEIVER,
and TRANSID to access the lookup table. See “Securing Non-EDI Data” on page 6-
54 for more details on SECFILE.

SECURE This COMPRESS option, or the SECUREONLY COMPRESS option, must be specified to
invoke security processing. SECURE causes the Comm-Press program to use the
run-time files from TDManager to apply security to the data being compressed. With
the SECURE option, if no security relationship is defined (for example, no record

found in the lookup run-time file), then data is simply not secured, and no error is
issued. This option is not required by DECOMP to unsecure the data.

SECUREONLY This COMPRESS option, or the SECURE COMPRESS option, must be specified to
invoke security processing. SECUREONLY causes the Comm-Press program to use
the run-time files from TDManager to apply security to the data being compressed.
With the SECUREONLY option, if no security relationship is defined (for example, no

record found in the lookup run-time file), then an error is issued, and processing
stops. This option is not required by DECOMP to unsecure the data.

TDCompress User Guide

 - 2-14 -

SENDER= This COMPRESS option can be used when non-EDI data is secured. It provides the
value of the SENDER that is used to access the lookup run-time table. The
RECEIVER= option must also be specified.

SQL(ssn,plan
)

This option can be used when securing data in an MVS-DB2 environment. If MVS-
DB2 is the TDManager repository, then COMPRESS and DECOMP can directly access
the tables for run-time information. This option specifies the DB2 subsystem name
and plan used to access the TDManager database tables. Run-time files are not used
when this option is specified.

TRANSID= This COMPRESS option can be used when non-EDI data is secured. It provides the
value of the TRANSID that is used to access the lookup run-time table. If no TRANSID
is provided, then COMPRESS uses a default value of '*' (all non-EDI data). The
SENDER= and RECEIVER= options must be specified.

UNWRAP This option is only valid when the EDI option is specified. UNWRAP causes COMPRESS
and DECOMP to begin each EDI segment on a new line.

USEGS This COMPRESS option is only valid when the EDI option is specified. Normally the
SENDER and RECEIVER values are taken from the X12 ISA segment. USEGS causes

the GS02 and GS03 elements of the GS segment to be used instead.

Extended Security Option Overview
The TDCompress Extended Security Option, used in conjuction with the TDManager product, provides
complete, end-to-end security for X12-formatted EDI data, EDIFACT and non-EDI data. Security functions
provided by TDCompress include bulk data encryption, using either the DES, Triple DES or RC2

algorithms, authentication and digital signatures. At the heart of TDCompress security is public/private
key technology licensed from RSA, Inc. An overview of secret and public/private key encryption as well as
a description of their use in providing data security follows below.

TDCompress User Guide

 - 2-15 -

Overview of Secret Key Encryption
Traditional encryption algorithms rely on keys—a special piece of datato encrypt and decrypt data. These
algorithms are known as symmetric, or secret, key algorithms because the same key is used to encrypt
and decrypt data. The strength of an encryption algorithm is determined by how difficult it is to decrypt
data without knowing the key used to encrypt it.

With strong algorithms such as DES, Triple DES, and RC2, it is not feasible to recover encrypted data

without knowing the key. Therefore, attacks are performed to determine the key used during encryption.
Strong algorithms are resistant to this type of attack; every possible key value would have to be
attempted to determine the keys used to encrypt the data. With DES, 255 possible key values exist; a very
large number to be attempted before successfully breaking the encrypted data. Triple DES has 2167

possible keys.

Because of the difficulty in breaking strong encryption algorithms, attacks are made to intercept or steal
keys. The secrecy of the keys is fundamental to maintaining the secrecy of the encrypted data. If trading
partners are not diligent in protecting the keys when they are distributed and stored, then the data
encrypted with those keys is also unprotected. For this reason, symmetric key algorithms require that
secure channels and complex key distribution protocols be employed to share secret keys among trading
partners. The trading partners themselves must then be relied upon to ensure the keys remain secret.

Public/private key technology enhances traditional encryption algorithms by providing easier and more
secure use of secret keys. Electronic, or digital, signatures, possible only with public/private key
technology, also provide authentication and assurance that data has not been tampered with after being
secured. An overview of how public/private key technology enhances security follows.

An Overview of Public/Private Key Encryption
With RSA’s public/private key technology, each trading partner, or security participant, has two keys that
are used during the security process. The public key is shared among all participants that wish to
exchange secure data; while the private key is kept secret and is only known by the participant that owns
it. Each public/private key pair is made up of two very large numbers that are the result of a complex
mathematical function. Key pairs have the property such that when one key is used to encrypt data, only
the other key in the pair can decrypt the data. For example, if the public key is used to encrypt, then only
the private key will successfully decrypt. Key pairs also have the property such that even when the public
key is known, it is computationally impossible to determine the private key. These two properties—the
keys being inverses of each other and the mathematical difficulty of discovering the private key, are what
make RSA’s public/private key technology so useful in providing a higher degree of data security.

TDCompress User Guide

 - 2-16 -

Since public keys are public, it is not necessary to secure them or take special precautions when
distributing them among trading partners. In fact, the more widely known the public key, the more secure
participants are from the possibility of an impostor trying to send false data by impersonating another
trading partner. Private keys are never shared among security participants, so the possibility of them
being intercepted is eliminated. The private keys are stored in an encrypted format by bTrade.com, so
that even the owner of the private key does not normally know its actual value.

Using Public/Private Key Technology to Encrypt Data
The drawback to public/private key encryption, is that encryption operations with the private key are
relatively expensive in computational terms; so much so that bulk encryption of data using public/private
keys is unfeasible due to the amount of time and computing resources required. Instead, public/private
keys are used to enhance the implementation of faster secret key algorithms, such as :using DES or RC2,

to perform bulk data encryption.

As discussed earlier, the problem with secret key algorithms is the need to maintain secrecy of the keys
over a relatively long period of time and to ensure secure distribution of the keys among trading partners.
Public/private key technology eliminates both of these concerns. With public/private key technology, a
randomly generated value is used as the secret key for the bulk encryption algorithm. After being used to
encrypt the data, this random key is encrypted with the recipient’s public key and is sent along with the
encrypted data. The recipient recovers the random key by decrypting it with his private key. Since the
private key must be used to decrypt data encrypted by the public key and since private keys are known
only by their owners, the recipient is the only person who can recover the random, secret key. The
recipient then uses the recovered secret key to decrypt the received data.

TDCompress User Guide

 - 2-17 -

Digital Signatures and Authentication
Digital signatures, or assurances, are electronic signatures that can be applied to any electronic
document. Digital signatures are more secure than actual handwritten signatures because they cannot be
forged and they cannot be denied, or repudiated. This is due to the fact that the signer’s private key is
truly private. Forgery is not possible because only the signer has knowledge of his private key, and thus is
the only person who can create his unique signature. Additionally, the signer cannot claim at some later
date that the signature is invalid because anyone with knowedge of the signer’s public key can verify the
signature. If the signer’s public key successfully verifies the signature, then the signer cannot deny that he
created the signature.

A digital signature is created by first generating a hash, or message digest, of the electronic document
being signed. The message digest is a large number that is the end product of running a hashing
algorithm against the document. When a good hashing algorithm is used, it is statistically impossible for
two documents to generate the same message digest. Thus, the digest is a unique mathematical
representation of the document being signed. TDCompress uses the MD5 hashing algorithm to create
message digests. Once the message digest is calculated, the digital signature is completed by encrypting
the digest with the signer’s private key.

The digital signature can be verified by anyone who knows the signer’s public key. The verifier simply
uses the same hashing algorithm used by the signer to regenerate the message digest. The verifier then
decrypts the signature using the signer’s public key. If the regenerated digest and the decrypted digest
match, the signature is successfully verified. If the digests do not match, then either the document has
been altered since the signature was created, or an impostor is trying to forge the digital signature.

TDCompress also uses digital signatures to provide data authentication. Authentication is used to verify
that data has not been altered since it was sent. Authentication also ensures that the supposed sender,
rather than an impostor, actually sent the data. From the previous discussion of digital signatures, one
can see that both the objectives of authentication are provided by the signatures. Digital signatures add
further security than authentication alone because they cannot be repudiated.

Filtering
Filtering is used to convert compressed/encrypted data into a stream of printable characters. Filtering is
useful when data is transmitted using protocols that do not support binary, or transparent, file transfers.
Because filtered data consists only of printable characters, it may be transmitted as a normal text file
without regard to cross-platform or network specific rules for data translation. While this ensures that the
compressed/encrypted data will arrive at its destination intact, the drawback is that filtering increases the
size of the compressed/encrypted data.

TDCompress User Guide

 - 2-18 -

Encrypting Data with TDCompress
You can encrypt compressed data by using one of the COMPRESS encryption options — DES, DE3 or RC2.
These options only provide bulk data encryption. More advanced security, such as key management and
digital signatures using RSA public key technology, is available via the SECURE parameter in

TDCompress Extended Security Option and the TDManager product.

Choose the COMPRESS encryption option depending on the degree of security required and, if the

encrypted data is being exported to a foreign country, any export restrictions that apply to the encryption
algorithm.

The RC2 option applies the RC2 encryption algorithm invented by RSA and provides the weakest
encryption. It is exportable without restrictions. The RC2 algorithm uses a 40-bit secret key.

The DES option applies the Data Encryption Standard algorithm and provides encryption. The U.S.
government endorses the DES algorithm for encrypting non-classified data. The DES algorithm uses a 56-

bit secret key.

The DE3 option applies the DES algorithm three times with three different keys. This is known as the
Triple DES algorithm and it provides strong encryption. Triple DES is not exportable without prior approval

from the U.S. government. It uses a 168-bit secret key.

Specifying the Secret Key and Initialization Vector
When using the DES, DE3 or RC2 options, the same secret encryption key must be provided during both
compression and decompression. Additionally, an initialization vector must be provided to add
randomness to the encrypted data. Both the key and initialization vector must be kept secret. Only the
parties involved in the compression/encryption and decompression/decryption of the data should know
them.

A secret key of the appropriate length depending on the algorithm chosen must be provided. RC2 requires
a 8-byte key (of which 40 key bits are used), DES requires an 8-byte key (56 key bits and 8 parity bits)
and DE3 requires a 24-byte key (168 key bits and 24 parity bits). The initialization vector for all algorithms

is 8 bytes in length. Supply the key and initialization vector either on the command line or in a file.

Supplying the Key and IV on the Command Line
Use the KEY= and IV= options to provide the values on the command line. Follow the equal signs in

each option with the character representation of the hexadecimal values of the key and initialization
vector. A command line example using the DES option follows.

compress input.fil output.fil des key=c5d4d4c1d5e4c5d3 iv=9d0a2300ed1c67f3

TDCompress User Guide

 - 2-19 -

Supplying the Key and IV in a File
To supply the secret key and initialization vector in a file, use a hexadecimal editor to create a file and
enter their hexadecimal values.

• PC and UNIX workstation users must name the file encrypt.key and place it in the working
directory when COMPRESS and DECOMP execute.

• OS/400 users create a file named KEYIN, which must be in the library list when COMPRESS and
DECOMP execute.

• MVS users refer to the file via the KEYIN DD statement.

• VMS users must define the logical name SYS$COMPRESS to point to the drive and directory
where COMPRESS and DECOMP will look for the file named encrypt.key.

• For all platforms, the file contains a single record. The first 24 bytes are reserved for the secret
key. Bytes 25 through 32 are for the initialization vector.

An example encrypt.key file for use with the DES option follows. In the example, the key and initialization
vector consist entirely of text bytes; however, no EBCDIC/ASCII translation of the values takes place. The
bytes are treated as hexadecimal values. To enter a byte value, use a hexadecimal editor. Because DES
requires an 8-byte key, spaces appear in bytes 9 through 24 of the secret key field. Column headings are
shown for clarity.

DONTTELL ANYONE!!
1 25

TDCompress User Guide

 - 3-20 -

Chapter 3: COMPRESS and DECOMP
Options

The COMPRESS and DECOMP programs support several options that are used to invoke the programs’
advanced features. Add options to the workstation command line or MVS and AS/400 PARM clause to
invoke the features. Some features are common to all computer platforms supported by TDCompress and
some features are platform specific. Tables listing the COMPRESS and DECOMP options and the computer
operating platforms where they apply, are displayed in the following tables.

TDCompress User Guide

 - 3-21 -

Compress Options

Common
 PC UNIX AS/400 MVS

APPEND X X X X
ASCII X X X X
AUTOEXT X X
BISYNC X X X X
CRLF X X X X
DELETE X X
DELIMIT X X
DES X X X X
DE3 X X X X
DIRNAME X X
EDI X X X X
FILTER X X X X
IGNORE1A X X
IV X X X X
KEY X X X X
LOGPATH X X X
LOOKUP X X X X
NOINFO X X X X
NOLOG X X X X
PF X X X X
QUIET X X X X
RC2 X X X X
RECURSE X X
SAVEMODE X
SIZE X X X X
SKIPWHITESPACE X X X X
SPEED X X X X
STDIN X X
TRANTBL X X X X
TRLBLK X X

TDCompress User Guide

 - 3-22 -

TDCompress Extended Security Options
 PC UNIX AS/400 MVS

CCA X
RECEIVER X X X X
RUNTIMEPATH X X X
SECFILE X X X X
SECURE X X X X
SECUREONLY X X X X
SENDER X X X X
SQL(ssn,plan) X
TRANSID X X X X
USEGS X X X X

Decompress Options

Common
 PC UNIX AS/400 MVS

APPEND X X X X
AUTOEXT X X
DELETE X X
DIRNAME X X
EDI X X X X
IV X X X X
KEY X X X X
LIST X X X X
LOGPATH X X X
LOWERCASE X
NOINFO X X X X
NOLOG X X X X
NOUNCOMP X X
ODATE X
QUIET X X X X
SAFE X X X X
SELECT X X X X
STDOUT X X

TDCompress User Guide

 - 3-23 -

TRANTBL X X X X
UNCOMP X X
UNWRAP X X X X
USEINFO X

PC and UNIX workstation users can also set the LOGPATH= and RUNTIMEPATH= environment variables
to set these locations globally.

TDCompress Extended Security Option
 PC UNIX AS/400 MVS

ARCHIVE X X X X
CCA X
KEEPSIGS X X X X
RUNTIMEPATH X X X
SECURECK X X X X
SQL(ssn,plan) X

TDCompress User Guide

 - 3-24 -

Compress/Decompress Option Descriptions
APPEND This option commands COMPRESS and DECOMP to append data to the end of

existing output files. The output files are created, if they do not exist. Appended
compressed files can be separated into individual files during decompression.
Note, that an implicit APPEND operation takes place when multiple input files are
specified (via a file mask) but a single output file is produced. For example, the
following command causes all files in the INDIR directory to be compressed into
the single output file COMP.OUT:

Compress \indir*.* \compwork\comp.out

ARCHIVE This option commands DECOMP to save specific information relating to an

authenticated file to enable reprocessing. Related information is stored in a
dynamically allocated file containing a copy of the input file as well as in the
decomp.log. The syntax of this option is ARCHIVE—stores the dynamically
allocated files into the current working directory or ARCHIVE=path—defines a
directory path (or high-level qualifier) to be specified for file storage.

ARCHIVE=path See ARCHIVE.

ASCII This option causes COMPRESS to translate the data to ASCII or EBCDIC, if
necessary, depending on the platform where the data is decompressed. The
ASCII and CRLF options should always be used when compressing text files.

AUTOEXT[=n] This option commands COMPRESS and DECOMP to automatically generate numeric
extensions to name the output files. The optional value n specifies the number of
digits to use in the extension. n may be in the range from one to nine. The default
number of digits is three. The generated extensions start with two and continues
to the highest number possible for the number of digits in the extension. All
extensions are left-padded with zeros so they are n digits in length. The
extensions are appended to the output name specified on the command line to
create the full output file name. If the output name specified on the command line
does not exist, then the name without an automatic extension, is used to name
the first output file. Subsequent output files contain extensions. Existing output
files are not overwritten. When decompressing, if the compressed files contain the
original file name in the signature, the original names are used to name the output
files unless the NOINFO option is specified. For example, the following command
decompresses the input data into separate output files named DCMP.OUT,
DCMP.002, DCMP.003, etc. The original file names are ignored.

decomp \indir*.* \compwork\dcmp.out autoext noinfo

TDCompress User Guide

 - 3-25 -

BISYNC This option invokes a proprietary filter algorithm that prevents bytes within the
compressed data from being misinterpreted as BISYNC control characters. Use of
this option is not recommended. If your BISYNC communications software does
not support transparency mode, use the FILTER option described below.

CCA Optional Special Feature support. Refer to “Appendix D” on page 10-117 for
information.

CRLF This option commands COMPRESS to convert delimiter characters (for example,

line feeds or carriage return/line feed pairs) into record separators. On AS/400
and MVS machines, COMPRESS inserts record separators at the end of each input

record. During decompression, the delimiter characters that are appropriate for
the target platform replace the record separators. On the PC and UNIX
workstations, this option causes a x'1A' character to be treated as an end-of-file
marker unless the IGNORE1A option is also chosen. The ASCII and CRLF options

should always be used when compressing text files.

DE3 This option is not available when the software is exported unless special approval
is received from the U.S. government. DE3 invokes the Triple DES encryption
algorithm. Triple DES is simply the DES algorithm executed three times with three
different keys. A 24-byte encryption key (actually three 8-byte keys) must be
supplied and the same key must be used to decompress the data. See
“Encrypting Data with TDCompress” on page 2-18 for further details.

DELETE This option causes DECOMP to delete the input files after successful

decompression.

DELIMIT=nn This option, in conjunction with the FILTER option, creates compressed data in
delimited-text format. COMPRESS adds delimiters (for example, line feeds or

carriage return/line feed pairs) after every nn characters of compressed output.
The FILTER option is automatically invoked if this option is used.

DES This option invokes the Data Encryption Standard—U.S. government standard
encryption algorithm. An 8-byte encryption key must be supplied and the same
key must be used to decompress the data. See “Encrypting Data with
TDCompress” on page 2-18 for further details.

TDCompress User Guide

 - 3-26 -

DIRNAME For COMPRESS, this option stores the full path of the input file, including the

directory, in the compressed output. Default action is to store only the file name.
For DECOMP, this option uses the input file path names stored in the compressed

data to build an output path for the decompressed files. The input file path names
are concatenated to the output path specified on the command line, or to the
current directory if no output path was specified, in order to generate the actual
path name for the decompressed files. If the resulting output path does not exist, it
is automatically created.

This option is not valid in combination with the EDI parameter because directory
information is not stored by COMPRESS processing.

EDI This option may be used when X12, EDIFACT, UN/TDI, or UCS EDI data is
compressed. The header and trailer records that mark the start and end of an EDI
envelope are left uncompressed in the output file. Use of this parameter also
ensures that the compressed data does not contain any characters that could be
misinterpreted as EDI control characters. If the EDI parameter is used to
compress the data, then the EDI parameter must also be used to decompress the

data.

FILTER This option invokes the FILTER algorithm described in RFC 1113 to convert the

compressed data from binary to text format. Filtered data is always transmitted as
text. Use this option when the data communication environment does not allow
transparent data transmission. FILTER is also required when the output data

contains a combination of compressed and uncompressed data, as is the case
when the EDI or PF options are used, and the data is transmitted between unlike
computer platforms. For example, EDI data on a PC that is sent to an AS/400
should be compressed with the EDI and FILTER options. The resulting

compressed file is then sent to the AS/400 as a text file.

IGNORE1A This option, when used with the CRLF option, causes COMPRESS to not treat any

x'1A' characters as end-of-file markers. Default processing when the CRLF option
is chosen is to stop reading input when a x'1A' character is read.

IV=iv This option, when used with one of the encryption options DES, DE3 or RC2,

provides the initialization vector for the enc ryption algorithm. See “Encrypting Data
with TDCompress” on page 2-18 for further details

KEEPSIGS This option is only valid when decompressing secured data. Digital signatures
present in the secured data are verified and then removed from the output files by
default. This option keeps digital signatures in the output. See “Securing Data
Using TDCompress” on page 2-12 for further details.

KEY=key This option, when used with one of the encryption options DES, DE3 or RC2,

provides the key for the encryption algorithm. See “Encrypting Data with
TDCompress” on page 2-18 for further details

TDCompress User Guide

 - 3-27 -

LIST This parameter causes DECOMP to print a listing of the compressed input with

each compressed segment categorized by its size and file information (if present).
LIST also checks each compressed segment for data integrity. Decompression is
not performed when LIST is specified.

This option is not valid in combination with the EDI parameter because the
information is not stored by COMPRESS processing.

LOGPATH=path This option gives the path or AS/400 library where the compression and
decompression log files are written. The default is to write the log files in the
current directory or AS/400 library. The names of the log files are compress.log
and decomp.log. Workstation users can also set the LOGPATH= environment

variable to set the location globally.

LOOKUP This option causes COMPRESS to read the CPLOOKUP file to determine whether to

compress EDI data. See “Securing Formatted EDI Data” on page 6-53 for further
details.

LOWERCASE This option causes DECOMP to convert all file names stored in the compressed

data to lower case before naming the decompressed output files.

NOINFO For COMPRESS, this option overrides the default storage of the input file name and
date in the compressed output. This information is normally used to name the
output files, if they are decompressed on a PC or UNIX workstation. For DECOMP,

this option causes any directory information stored in the compressed files to be
ignored when naming the decompressed output files.

This option is not valid in combination with the EDI parameter because the
information is not stored by COMPRESS processing.

NOLOG This option suppresses the creation of the compression and decompression log
files.

NOUNCOMP This option causes the MVS and AS/400 decompression programs to ignore
uncompressed data in the input. The default is to write uncompressed data to the
output file as is.

ODATE This option causes decompressed output files to retain the creation date and time
of the original compressed input files.

ODATE is only valid in true DOS mode.

TDCompress User Guide

 - 3-28 -

PF=filename This option is used when certain input records are to be left uncompressed. On
PCs and UNIX workstations, the input data must be delimited for this option.
Replace filename with the fully qualified name of a parameter file that contains
information about the records that are to be left uncompressed. Each record in the
parameter file contains a character string, its starting position in the input records,
and its length. COMPRESS examines each input record to see if one of the

character strings occurs in the specified location. If a match is found, then the
record is left uncompressed in the output file. The parameter file can contain as
many records as necessary to provide all the character strings used to identify
uncompressed records. The format of the parameter file records is:

<starting position> < length > <character string>

Each parameter file record must end with a record delimiter appropriate to the
computer platform (for example, a line feed character on UNIX, or a carriage
return/line feed pair on a PC). As an example, if records that contain the string
HEADER starting in column 10 and records that contain the string TRAILER
starting in column 1 are to be left uncompressed, then the parameter file will
contain the following two records:

10 6 HEADER
1 7 TRAILER

This option is not valid in combination with the EDI parameter.

QUIET This option suppresses all output messages from COMPRESS and DECOMP.

RC2 This option invokes the RC2 encryption algorithm. This algorithm is exportable to

foreign countries with no special authorization from the U.S. government. A 8-byte
encryption key must be supplied because it must also be used to decompress the
data. See “Encrypting Data with TDCompress” on page 2-18 for further details.

RECEIVER=rcvr This option may be used to provide the name of the security receiver when
securing data. RECEIVER is only valid when the SECURE option is also specified.

See “Securing Data Using TDCompress” on page 2-12 for further details.

RECURSE This option causes COMPRESS to travel down the subdirectory tree and compress
all files that match the input file mask. The DIRNAME option is automatically

invoked when this option is specified.

RUNTIMEPATH=path This option may be used to provide the path where the security run-time files are
located. RUNTIMEPATH is only valid when the SECURE option is also specified.
Workstation users can also set the RUNTIMEPATH= environment variable to set

the location globally. See Securing Data Using TDCompress” on page 2-12 for
further details.

SAFE This option causes DECOMP to create a reject file containing data that fails

decompression or decryption. Only valid data is written to the output file(s).

TDCompress User Guide

 - 3-29 -

SAVEMODE This option causes UNIX and VMS file modes to be saved in the compression
signature. The modes are restored on DECOMP.

SECFILE=filename This option provides the name of the security definition file that may be required
when securing non-EDI data. This option is only valid when the SECURE option is

specified. See “Securing Data Using TDCompress” on page 2-12 for further
details.

SECURE This option invokes the advanced security features of TDCompress Extended
Security Option. This is the lenient form of invoking security. If no security
relationship is defined (for example, no record found in the lookup run-time file),
then the data is not secured, and no error is issued. Contrast this with the
SECUREONLY option. See “Securing Data Using TDCompress” on page 2-12 for
further details.

SECURECK With this option DECOMP ensures that only decrypted data is written to the output

file(s). Input data that is not encrypted is written to a reject file.

SECUREONLY This option invokes the advanced security features of TDCompress Extended
Security Option. This is the strict form of invoking security. If no security
relationship is defined (for example, no record found in the lookup run-time file),
then an error is issued and processing stops. “Securing Data Using
TDCompress” on page 2-12 for further details.

SELECT() This option allows selective decompression of compressed segments. The
segments must contain embedded file name information (included by default
when compressing on an AS/400 or workstation). Specify the exact file names of
the segments to decompress in the parentheses that follow the SELECT
parameter. Separate multiple file names with a comma. If multiple segments with
the same file name are in the input file, then by default, the first segment is
decompressed. Override this default action by adding a colon and relative
sequence number to the file name. An example follows:

decomp infile \work select(file.txt.1)

The above example reads the compressed archive file named INFILE. It
decompresses the first occurrence of the compressed file named FILE.TXT.
\WORK is the directory where the decompressed file is written.

This option is not valid in combination with the EDI parameter because the
filename is not stored by COMPRESS processing.

SENDER=sndr This option is used to provide the name of the security sender when securing
data. SENDER is only valid when the SECURE option is specified. See “Securing
Data Using TDCompress” on page 2-12 for further details.

TDCompress User Guide

 - 3-30 -

SIZE This option creates the smallest possible compressed output at the expense of
processing time.

SKIPWHITESPACE This option is valid only in conjunction with the EDI parameter.
SKIPWHITESPACE causes invalid characters in EDI segments (for example,

carriage return/line feed characters) to be skipped. This option is useful when the
transmission software inserts the invalid characters and causes COMPRESS and
DECOMP to process the EDI data incorrectly.

SPEED This option decreases processing time at the expense of compressed output
size. In many cases the savings in processing time make up for the slightly larger
compressed output.

SQL(ssn,plan) This option can be used when securing data in an MVS-DB2 environment. If
MVS-DB2 is the TDManager repository, then COMPRESS and DECOMP can

directly access these tables for run-time information. This option specifies the
DB2 subsystem name and plan used to access the TDManager database tables.
Run-time files are not used when this option is specified.

Default: ssn=DSN plan=COMPSQL

STDIN This option causes COMPRESS to read its input from STDIN rather than from disk
files.

STDOUT This option causes DECOMP to write its output to STDOUT rather than to disk
files. Specify the QUIET parameter in addition to STDOUT to keep messages
from appearing in the data file.

TRANSID=trid This option is used to provide the name of the security transaction ID when
securing data. TRANSID is only valid when the SECURE option is specified. See
“Securing Data Using TDCompress” on page 2-12 for further details.

TRANTBL This option provides the name of an ASCII/EBCDIC translation table to use when
compressing and securing data.

TRANTBL when used on an ASCII workstation does not translate data being

compressed. It would only affect hash processing for authentication. Yes or No
overrides the CPLOOKUP table. Filename gives the name of an actual translation
table. Transupdate is supported on MVS.

TRLBLK This option, when used with the CRLF option, causes trailing blanks in MVS and
AS/400 records to be removed from the compressed data. Default CRLF
processing keeps trailing blanks.

TDCompress User Guide

 - 3-31 -

UNCOMP This option signals DECOMP that the input files contain valid uncompressed data
in addition to compressed data. DECOMP will copy the uncompressed data to the
output files as it decompresses. If this option is not specified, then any data that
occurs between the end of a compressed segment and the beginning of the next
compressed segment are assumed to be pad characters and are ignored.

This option is not valid in combination with the EDI parameter, since all data
outside the EDI envelope is ignored and passed as -is by default.

UNCOMPSIG This option tells DECOMP to expect a signature at the end of the file during a
session.

UNWRAP This option is valid only in conjunction with the EDI option. When both the EDI
and UNWRAP options are specified, COMPRESS and DECOMP split EDI segments
so that each segment begins on a new record.

USEGS This option is only valid when the SECURE and EDI options are also specified.
USEGS causes the GS02 and GS03 elements of the X12 GS segment to be used
as the security sender and receiver. See “Securing Data Using TDCompress “ on
page 2-12 for further details.

USEINFO This option is used to name decompressed members on an AS/400. DECOMP
does not normally create members when decompressing. All decompressed data
is appended into the output file specified on the command line. USEINFO uses

the file names stored in the compressed data to create members in the output
file.

TDCompress User Guide

 - 4-32 -

Chapter 4: Key Generation and
TDManager Run-time Files
(TDCompress Extended
Security Option)

To take advantage of the advanced security features of TDCompress, the user must have an RSA
public/private key pair and security run-time files from TDManager.

Public/private key pairs are generated in one of several ways:

• As part of the TDManager Trading Partner Registration

• Using the TDAccess software

• Using the GENKEYS utility distributed with TDCompress

Refer to the TDManager User Guide or the TDAccess User Guide for instructions on using these
products.

The GENKEYS utility is used when batch key generation is required. GENKEYS requires an input
configuration file, named easyacc.ini, that is produced by the TDManager product. Additional input
parameters provide GENKEYS with the name of the passphrase location file, the path for the input
easyacc.ini file, and user-provided randomization data. GENKEYS is provided on the AS/400, MVS
and workstation platforms.

The IMPORT utility is a batch program that installs the TDManager security run-time files. Once the files

are imported, the user can begin securing data with their trading partners.

RSA Key Generation
The GENKEYS utility reads the EASYACC configuration file from TDManager and creates two output files
— CERTREQ and PRIVKEY. The PRIVKEY file created by GENKEYS is a permanent key file and must be
retained. The CERTREQ file contains the portion of the key that the TDManager certifies. The TDManager
Administrator issues the security run-time files required to transmit secure data. Refer to the respective
platforms for installation instructions.

TDCompress User Guide

 - 4-33 -

TDManager Run-time Files
When using the ARCHIVE option of DECOMP, the TDManager Administrator retains participant records for
affected files. These participants may have their certificates revoked, which consequently inactivates
them. However, the participant must remain in the tables, so that all certificates are available for archived
information.

TDManager is a Windows application that provides complete key and trading partner relationship
management. It creates run-time files that are used by TDCompress to secure data transmitted between
trading partners. The run-time files created by TDManager and used by TDCompress to secure data are
the certificate, private key and symmetric key files, as well as the lookup and participant tables. See the
TDManager User Guide for complete details on using TDManager. A brief description of the run-time files
and how they are used by TDCompress follows.

The Certificate Run-time File
The certificate file contains the public keys of all the trading partners who wish to exchange secure data.
The public keys are stored in a standard format — ANSI X.509 — called a certificate to which TDManager
and TDCompress adhere. Certificates contain the distinguished name of the public key owner as well as
a copy of the public key, and the starting and ending validity dates of the key. The entire certificate is
digitally signed by a trusted authority (for example, the TDManager) who certifies and issues the public
key.

For workstation users, the certificate file is called cert.fil. The RUNTIMEPATH command-line option or

environment variable points to the directory where the file is stored.

For MVS users, the certificate file is referenced via the PUBLKEYS DD statement.

For AS/400 users the certificate file is called CERT and must be accessible via the library list.

The Private Key Run-time File
The private key file contains the private keys of local security participants that originate and send secure
data from the site where TDCompress is run. Private keys are never shared among trading partners.

For workstation users, the private key file is called private.fil. The RUNTIMEPATH command-line option or

environment variable points to the directory where the file is stored.

For MVS users, the private key file is referenced via the PRIVKEYS DD statement, or may be accessed
directly from DB2 tables using the SQL parameter.

TDCompress User Guide

 - 4-34 -

For AS/400 users, the private key file is called PRIVATE and must be accessible via the library list.

The private keys are stored so unauthorized persons cannot view them. Each private key is encrypted
with a random passphrase when the key is generated to ensure the secrecy of the private key. However,
TDCompress needs the passphrase at run time to decrypt the private key and perform security functions.
(For example, creating a digital signature or decrypting an encrypted DES or RC2 key). Depending on
options specified when the private key is generated, the passphrase may either be stored with the private
key itself, or it may be supplied in an external file. Storing the passphrase with the private key is a
convenience feature. This is recommended if the private key file is protected against unauthorized
viewing and copying. If the passphrase is stored in an external file, then the name of the file containing
the passphrase is specified when the keys are generated. The passphrase file can be on removable
media, such as a diskette, that is stored in a secure location when not in use. For MVS users, the
passphrase file should be RACF or ACF2 protected. The passphrases are encrypted with a static
encryption key to guard against casual viewing. However, it is the user's responsibility to employ
appropriate procedures to protect the passphrase files from unauthorized access.

The Symmetric Key Run-time File
The symmetric key file is only present when interoperating with older security software such as Sterling
Software’s Dataguard product. The symmetric key file contains the secret DES keys used to authenticate

and encrypt data according to the symmetric key standards of X12.58.

For workstation users, the symmetric key file is called symkey.fil. The RUNTIMEPATH command-line

option or environment variable points to the directory where the file is stored.

For MVS users, the lookup table is referenced via the SYMKEY DD statement or may be accessed
directly from DB2 tables using the SQL parameter.

For AS/400 users, the symmetric key file is called SYMKEY. It must be accessible via the library list.

The Lookup Table Run-time File
The lookup table contains records that define security options used between trading partners. Lookup
table records contain keyword/value combinations that define the sender, receiver, transaction type and
security options for each trading partner relationship.

For workstation users, the lookup table is called CPLOOKUP.TBL. The RUNTIMEPATH command-line

option or environment variable points to the directory where the file is stored.

For MVS users, the lookup table is referenced via the CPLOOKUP DD statement or may be accessed

directly from DB2 tables using the SQL parameter.

TDCompress User Guide

 - 4-35 -

For AS/400 users, the lookup table is called CPLOOKUP. It must be accessible via the library list.

TDCompress looks up security options based on sender, receiver and transaction type values.
If a match is found, then the security options specified for that trading partner relationship are used to
secure the data.

The Participant Table Run-time File
The participant table contains information used to build EDI security segments. The table is optional,
however, TDCompressuses default values when none are specified or when the file is not present.

For workstation users, the participant table is called partic.tbl. The RUNTIMEPATH command-line option or

environment variable points to the directory where the file is stored.

For MVS users, the participant table is referenced via the PARTIC DD statement or may be accessed

directly from DB2 tables using the SQL parameter.

For AS/400 users, the participant table is called PARTIC. It must be accessible via the library list.

TDCompress User Guide

 - 5-36 -

Chapter 5: SECFILE Keywords By
Platform

MVS

SECFILE Keywords for Data with User-Defined Headers
COMPRESS can get the SENDER, RECEIVER and TRANSID values from user-defined headers in the data.
SECFILE keywords must be coded to inform COMPRESS how to recognize a header record as well as
where the SENDER, RECEIVER and TRANSID values are in the header. All SECFILE keywords are coded
using a KEYWORD(VALUE) syntax. Note that the first parenthesis must immediately follow the keyword
with no intervening spaces. SECFILE keywords can be coded on multiple lines in the file, however,
keywords and values cannot be split across lines. A list of the valid SECFILE keywords along with a short

description of their use follows below.

Parameter Description

HEADERLITERAL() Specifies the unique literal that identifies header records
HEADERSTART() Specifies the starting column of the header literal
SENDERSTART() Specifies the starting column of the sender field
SENDERLENGTH() Specifies the length of the sender field (max of 15)
RECEIVERSTART() Specifies the starting column of the receiver field
RECEIVERLENGTH() Specifies the length of receiver field (max of 15)
TRANSIDSTART() Specifies the starting column of the transaction field
 (optional)
TRANSIDLENGTH() Specifies the length of the transaction field (optional;
 max of 3)

TDCompress User Guide

 - 5-37 -

The parameters are discussed in detail, based on a sample file containing two header records followed by
data records. The example file is shown below:

column: 1 10 20 30
data HEADER SNDR01 RCVR01 PO
 data

record

 data
record

 HEADER SNDR02 RCVR02 PO
 data

record

 data
record

In the above example, the header literal begins in column one of the header records. The sender field
begins in column ten and is six characters in length. The RECEIVER field begins in column twenty and is
also six characters in length. The TRANSID field begins in column thirty with a two character length.

A user-defined header record must contain a literal value somewhere in the record for COMPRESS to be
able to distinguish it as a header. The SECFILE keywords HEADERLITERAL()and HEADERSTART() tell
COMPRESS what the header literal is as well as where to find it on the header record. For the above

example these keywords would be coded as follows:

HEADERLITERAL(HEADER) HEADERSTART(1)

Next, the fields containing the SENDER, the RECEIVER and the TRANSID must be identified to
COMPRESS. The SENDERSTART(), SENDERLENGTH(), RECEIVERSTART(), RECEIVERLENGTH(),
TRANSIDSTART() and TRANSIDLENGTH() keywords accomplish this. For the above example these
parameters would be coded as follows:

SENDERSTART(10) SENDERLENGTH(6)
RECEIVERSTART(20) RECEIVERLENGTH(6)
TRANSIDSTART(30) TRANSIDLENGTH(2)

The set of keywords should be ended with a semicolon. So, for example, the entire SECFILE would be

coded as follows:

HEADERLITERAL(HEADER) HEADERSTART(1)
SENDERSTART(10) SENDERLENGTH(6)
RECEIVERSTART(20) RECEIVERLENGTH(6)
TRANSIDSTART(30) TRANSIDLENGTH(2);

A header record need not contain all three of the SENDER, RECEIVER and TRANSID values. Undefined

values default to '*'.

TDCompress User Guide

 - 5-38 -

SECFILE Keywords for Data with No Headers
When non-EDI data does not contain any user-defined headers, SECFILE keywords simply provide the
SENDER, RECEIVER and TRANSID values for COMPRESS to use to search the lookup table. This implies
that the file can only be sent to a single recipient. The SECFILE parameters used to provide the
information are:

Parameter Description

SENDER() Specifies the sender value
RECEIVER() Specifies the receiver value
TRANSID() Specifies the transaction value

For example, to secure a file being sent from user SNDR01 to recipient RCVR01 with a TRANSID of PO,
the SECFILE would be coded as follows:

SENDER(SNDR01) RECEIVER(RCVR01) TRANSID(PO);

All three SENDER, RECEIVER and TRANSID values need not be specified. Undefined values default to '*'.

MVS Example for Securing Non-EDI Data
//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//COMP EXEC PGM=COMPRESS,PARM='SECURE SECFILE=DD:SECFILE',
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//COMPLOG DD SYSOUT=*
//DATAIN DD DSN=input.file.to.compress,DISP=OLD
//DATAOT DD DSN=compressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//PUBLKEYS DD DSN=secmgr.cert.fil,DISP=SHR
//PRIVKEYS DD DSN=secmgr.private.fil,DISP=SHR
//SYMKEY DD DSN=secmgr.symkey.fil,DISP=SHR
//CPLOOKUP DD DSN=secmgr.lookup.tbl,DISP=SHR
//PARTIC DD DSN=secmgr.partic.tbl,DISP=SHR

//SECFILE DD DSN=secfile.parms.defining.user.headers,DISP=SHR

TDCompress User Guide

 - 5-39 -

PC
SECFILE Keywords for Data with User-Defined Headers
COMPRESS can get the SENDER, RECEIVER and TRANSID values from user-defined headers in the data.
SECFILE keywords must be coded that inform COMPRESS how to recognize a header record, as well as
where the SENDER, RECEIVER and TRANSID values are in the header. All SECFILE keywords are coded

using a 'KEYWORD(VALUE)' syntax. Note that the first parenthesis must immediately follow the keyword
with no intervening spaces. SECFILE keywords can be coded on multiple lines in the file; however,
keywords and values cannot be split across lines. A list of the valid SECFILE keywords along with a short

description of their use follows.

Parameter Description

HEADERLITERAL() Specifies the unique literal that identifies header records
HEADERSTART() Specifies the starting column of the header literal
SENDERSTART() Specifies the starting column of the sender field
SENDERLENGTH() Specifies the length of the sender field (max of 15)
RECEIVERSTART() Specifies the starting column of the receiver field
RECEIVERLENGTH() Specifies the length of receiver field (max of 15)
TRANSIDSTART() Specifies the starting column of the transaction field (optional)
TRANSIDLENGTH() Specifies the length of the transaction field (optional; max of 8)
HEADERDROP() (Default - N) - Reads values from header before dropping header

from data stream. (Y) – Keeps headers in data stream.
HEADERCLEAR() (Default – Y) – Leaves headers in the clear within the data stream.

(N) – Compresses headers within data stream.

The parameters are discussed in detail, based on a sample file containing two header records followed by
data records. The example file is shown below:

column: 1 10 20 30
data HEADER SNDR01 RCVR01 PO
 data

record

 data
record

 HEADER SNDR02 RCVR02 PO
 data

record

 data
record

TDCompress User Guide

 - 5-40 -

In the above example, the header literal begins in column one of the header records. The SENDER field
begins in column ten and is six characters in length. The RECEIVER field begins in column twenty and is
six characters in length. The TRANSID field begins in column thirty and is two characters long.

A user-defined header record must contain a literal value somewhere in the record for COMPRESS to be
able to distinguish it as a header. The SECFILE keywords HEADERLITERAL() and HEADERSTART() tell
COMPRESS what the header literal is, as well as where to find it on the header record. For the above

example these keywords would be coded as follows:

HEADERLITERAL(HEADER) HEADERSTART(1)

Next, the fields containing the SENDER, the RECEIVER and the TRANSID must be identified to
COMPRESS. The SENDERSTART(), SENDERLENGTH(), RECEIVERSTART(), RECEIVERLENGTH(),
TRANSIDSTART() and TRANSIDLENGTH() keywords accomplish this. For the above example these
parameters would be coded as follows:

SENDERSTART(10) SENDERLENGTH(6)
RECEIVERSTART(20) RECEIVERLENGTH(6)
TRANSIDSTART(30) TRANSIDLENGTH(2)

The set of keywords should be ended with a semicolon. So, for the example, the entire SECFILE would
be coded as follows:

HEADERLITERAL(HEADER) HEADERSTART(1)
SENDERSTART(10) SENDERLENGTH(6)
RECEIVERSTART(20) RECEIVERLENGTH(6)
TRANSIDSTART(30) TRANSIDLENGTH(2);

A header record need not contain all three of the SENDER, RECEIVER, and TRANSID values. Undefined
values default to '*'.

SECFILE Keywords for Data with No Headers
When non-EDI data does not contain any user-defined headers, SECFILE keywords simply provide the
SENDER, RECEIVER, and TRANSID values for COMPRESS to use to search the lookup table. This implies
that the file can only be sent to a single recipient. The SECFILE parameters used to provide the
information are:

Parameter Description

SENDER() Specifies the sender value
RECEIVER() Specifies the receiver value
TRANSID() Specifies the transaction value

For example, to secure a file being sent from user SNDR01 to recipient RCVR01 with a TRANSID of PO,
the SECFILE would be coded as follows:

SENDER(SNDR01) RECEIVER(RCVR01) TRANSID(PO);

TDCompress User Guide

 - 5-41 -

All three of the SENDER, RECEIVER and TRANSID values need not be specified. Undefined values default

to '*'.

PC Example for Securing Non-EDI Data
The following command is an example of how to compress and secure a file containing non-EDI data. In
the example, the file named DATA.FIL contains the data to be compressed/secured. It contains user-
defined header records. The input file will be compressed/secured into the DATA.CMP file in the
COMPWORK directory. The file named HEADER.DEF contains the SECFILE keywords that describe the

user-defined headers in the input file. The run-time files must be in the current directory, unless the
RUNTIMEPATH environment variable has been set. The 'compress.log' file is written to the current
directory, unless the LOGPATH environment variable has been set.

COMPRESS DATA.FIL \COMPWORK\DATA.CMP SECURE SECFILE=HEADER.DEF

TDCompress User Guide

 - 6-42 -

Chapter 6: MVS Platform

MVS Installation
The TDCompress MVS software is distributed either on a PC-DOS diskette, CD-ROM, or a 3480 tape
cartridge. Instructions for installing the TDCompress MVS software are shown on the following pages.

Using a diskette or CD-ROM
The disk files are compressed and self-extracting. Move the file to a PC file system and double-click the
filename to begin the installation application.

The resulting files are created using the TSO TRANSMIT command. To install the files on MVS,se this

procedure:

1. Transfer the resulting files from the PC to a mainframe using a 3270 file transfer program or FTP.
The files must be transferred in binary format to a file that has been defined with the attribuites as
RECFM=FB, LRECL=80, and BLKSIZE=3120. An example is listed below:

ftp 180.138.16.2 <= connect to MVS/OS390
 220 User (none)): userid <= enter USERID
 331 Enter password: <= enter PASSWORD
 230 USERID logged on.
 ftp> bin <= binary mode
 200 Representation type is binary IMAGE.

 ftp> quote site recfm=fb lrecl=80 blksize=3120
 200 Site command was accepted

 ftp> put loadlib.441 'user.compress.file' rep
 200 PORT subcommand request successful.
 125 Storing data set user.compress.file
 250 Transfer completed successfully.
 ftp> quit <= disconnect

2. Once the files are on the mainframe, issue the TSO RECEIVE command to unload the files into a
partitioned data set (PDS). See the next example.

RECEIVE INDA('USER01.UPLOAD.FILE')

This PDS is in MVS LOADLIB format with a RECFM (record format) of U and a BLKSIZE of 6144.
The PDS does need not be pre-allocated because the TSO RECEIVE command allocates it

during the unload. If you wish to unload the file into an existing library, it must have the same
RECFM and BLKSIZE attributes illustrated in the example above.

3. The RECEIVE command issues a prompt before it unloads the file, respond with the name of the

PDS where the TDCompress modules are installed. See the following example:

Enter restore parameters or DELETE or END + <=== prompt from RECEIVE
DA('USER01.LIBRARY') <=== type PDS name

TDCompress User Guide

 - 6-43 -

Using a 3480 tape cartridge
The distribution tape contains two files—a library containing the MVS load modules and the sample JCL
containing routines to execute the COMPRESS and DECOMP programs.

Below is an example of MVS JCL to unload the TDCompress distribution tape:

//UNLOAD JOB (ACCOUNT INFO),'user info',CLASS=A,MSGCLASS=X
//COPY1 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//INDD1 DD DSN=CMMPRESS.LOADLIB,DISP=(OLD,PASS),
// UNIT=TAPE,VOL=SER=CMTAPE,LABEL=(1,SL)
//OUTDD1 DD DSN=USER.LOADLIB,DISP=(NEW,CATLG),UNIT=SYSDA,
// SPACE=(CYL,(2,2,5)),BLKSIZE=6144,RECFM=U
//SYSIN DD *
 COPY I=INDD1,O=OUTDD1
//*
//COPY2 EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//INDD2 DD DSN=CMMPRESS.SAMPLIB,DISP=OLD,
// UNIT=TAPE,VOL=SER=CMTAPE,LABEL=(2,SL)
//OUTDD2 DD DSN=USER.SAMPLIB,DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(5,5,5)),BLKSIZE=3120,
// LRECL=80,RECFM=FB
//SYSIN DD *
 COPY I=INDD2,O=OUTDD2
//

Binding the DB2 Plan (Extended Security Option)
If MVS-DB2 is used as the TDManager repository, the DB2 tables can be accessed directly through
TDCompress for run-time information. (For example relationships, certificates, keys, etc.), specify the
SQL parameter on the COMPRESS/DECOMP execution.

Remember that the DB2 plan used to access the TDManager tables must be bound. The bind must be
repeated following any change to the DB2 tables or to the COMPRESS or DECOMP modules that access
them. The BINDJCL member in the SAMPLIB contains a sample job that may be used to bind the plan.
Refer to the comments in BINDJCL for details.

TDCompress User Guide

 - 6-44 -

Installing the TDManager Run-time Files

Using IMPORT on MVS
1. To complete the security configuration, install the run-time files generated by the TDManager.

a. Or optionally refer to the TDManager DB2 tables directly.

i. The run-time files are distributed as single, compressed and encrypted files,
which are installed by the IMPORT utility.

ii. Sample IMPORT JCL is distributed in the SAMPLIB PDS. Instructions for running

the job and installing your run-time files are included in the sample JCL.

MVS users must upload export.fil to a sequential data set using an FTP that supports binary file
transfers. No ASCII/EBCDIC or carriage return/line feed processing should be performed during the file
transfer. Once the file is uploaded, the IMPORT job, supplied in the TDCompress SAMPLIB can be run to
decompress the three run-time files. The IMPORT job contains two steps. The first step decompresses the
run-time files contained in export.fil. The dynamic allocation feature of the MVS DECOMP program is used

to allocate the three run-time files. The second step processes the decompressed private key file and
creates the external passphrase files. The passphrase files are dynamically allocated using the exact
data set names entered in TDManager.

Sequential passphrase files must not exist prior to running the IMPORT job. They are created via dynamic

allocation. However, if passphrases are stored as members of a partitioned data set, the PDS must exist
before the IMPORT job is run. Dynamic allocation then creates the individual members that hold the
passphrases.

Installation of the run-time files completes the security configuration. See “Securing Data Using
TDCompress” on page 2-12 for details on securing files using TDCompress.

Mainframe Operation
TDCompress contains two mainframe load modules named COMPRESS and DECOMP. The COMPRESS and
DECOMP load modules perform data compression and decompression on an IBM mainframe running the
MVS operating systems. The compressed data can be encrypted to ensure that data is kept confidential.

The COMPRESS module reads a sequential or partitioned data set, identified via the DATAIN DD, and
writes a compressed sequential dataset, identified via the DATAOT DD. EBCDIC-to-ASCII translation may
be performed during compression and carriage return/line feed delimiters may be added to the input
records. Special options are also included for compressing EDI-formatted data. Details for executing
COMPRESS on the mainframe are given in “Compressing on the Mainframe” on page 6-45.

TDCompress User Guide

 - 6-45 -

DECOMP reads a compressed sequential dataset identified via the DATAIN DD and writes a
decompressed sequential or partitioned data set, identified via the DATAOT DD. DECOMP is designed to
handle an input data set that contains compressed data from multiple remote sites. The compressed data
from each site has a signature in the first 16 bytes of the first compressed record (see “Appendix B” on
page 10-93 for details). This signature notifies DECOMP of the start of a group of compressed records.
Each group of compressed records is decompressed and written to the output data set. DECOMP accepts

uncompressed data mixed with compressed data in the input data set. Any record that does not belong to
a group of compressed records is simply written unchanged to the output data set. Details for executing
DECOMP on the mainframe are given in “Decompressing on the Mainframe” on page 6-46.

Compressing on the Mainframe
TDCompress supports fixed or variable, blocked or unblocked records. Spanned record formats are not
supported. Input is specified via the DATAIN DD statement and output is specified via the DATAOT DD
statement. The minimum output record length is 16 bytes for fixed records and 20 bytes for variable
records. Both input and output records may be up to the maximum record length allowed by the operating
system. DATAIN and DATAOT may specify different record formats and record lengths. COMPRESS uses
values set in the DCB to determine the record formats and lengths.

Execution parameters invoke various built-in features that prepare the data for transmission and
decompression. Parameters are provided to create platform-independent compressed files (for example,
ASCII and CRLF) as well as allow the compression of specialized data (for example EDI).

If the ASCII option is specified, COMPRESS translates the input from EBCDIC to ASCII. COMPRESS uses

a default table to perform the translation. The default character translations can be modified at execution
time. A listing of the default table as well as instructions for overriding the defaults are provided in “Error!
Reference source not found.” Error! Bookmark not defined..

COMPRESS parameters are specified via the PARM field on the execute statement. Multiple parameters
must be separated by at least one space. See “Compress Options” on page 3-21 for further information.

TDCompress User Guide

 - 6-46 -

Sample MVS JCL to compress mainframe data follows:

//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//COMP EXEC PGM=COMPRESS,PARM='ASCII CRLF',
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DATAIN DD DSN=input.file.to.compress,DISP=OLD
//DATAOT DD DSN=compressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//KEYIN DD * <=== required if DES, DE3 or RC2 parms specified
DONTTELL ANYONE!!
//

Decompressing on the Mainframe
DECOMP supports fixed or variable, blocked or unblocked records. Spanned record formats are not
supported. Input is specified via the DATAIN DD statement and output is specified via the DATAOT DD

statement. The minimum input record length is 16 bytes for fixed records and 20 bytes for variable
records. There is no minimum output record length and there is no maximum length for either the input or
output data sets. DATAIN and DATAOT may specify different record formats and record lengths. DECOMP

uses values set in the DCB to determine the record formats and lengths. The input data set may contain
both compressed and uncompressed data. DECOMP uses the 16-byte signature at the start of each
segment of compressed data to identify data that must be decompressed. Uncompressed data is simply
copied to the output data set as is.

DECOMP processes a sequential dataset as input. It writes either sequential or PDS output datasets.
DECOMP determines the DSORG of the input and output data sets at execution time.

When the output dataset is a PDS and the input file contains multiple compressed segments, such as
when multiple workstation files are compressed into a single file, each segment is decompressed into a
separate output PDS member. Decompressed PDS output member names are either copied from the
original input PDS member names, are made the same as the first 8 bytes of the file name stored in the
compressed data, or are generated by DECOMP. Generated names are of the form CPnnnnnn, where
nnnnnn is a six-digit number that starts at 000001 and is incremented by one for each output member.

TDCompress User Guide

 - 6-47 -

The dynamic allocation feature of DECOMP provides an alternative to splitting multiple compressed
segments into individual files. With this feature, DECOMP allocates a separate sequential output dataset for
each compressed segment encountered in the input. Further information and restrictions regarding use of
the dynamic allocation feature are in the “Using Dynamic Allocation with DECOMP” on page 6-48.

If the input was compressed with the ASCII option, DECOMP translates the decompressed output from
ASCII to EBCDIC. DECOMP uses a default table to translate data from ASCII to EBCDIC. The default

character translations can be modified at execution time. A listing of the default table as well as
instructions for overriding the defaults are provided in “Error! Reference source not found.” Error!
Bookmark not defined..

Selective decompression of compressed input segments is provided via the SELECT control statement.
SELECT statements are provided by the user via the SYSIN DD. Further information on selective
decompression is provided in “Error! Reference source not found.” Error! Bookmark not defined..

DECOMP parameters are specified via the PARM field on the execute statement. Multiple parameters must

be separated by at least one space. Refer to “Error! Reference source not found.” Error! Bookmark
not defined. for further information.

Sample MVS JCL to decompress mainframe data (without dynamic allocation) follows:

//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//DECOMP EXEC PGM=DECOMP,
// PARM='EDI SQL(DSN,COMPPLAN)',
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DATAIN DD DSN=compressed.input.file,DISP=OLD
//DATAOT DD DSN=decompressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//KEYIN DD * <=== required if the compressed data is encrypted
DONTTELL ANYONE!!
//

TDCompress User Guide

 - 6-48 -

Using ARCHIVE with DECOMP
DECOMP has the ability to collect specific information required to process secure files at a later time. When
the ARCHIVE keyword is specified, a copy of the input file is placed into the directory path (or high-level
qualifier) specified by ARCHIVE=. When ARCHIVE is specified alone, the default directory is the current
working directory. DECOMP can dynamically allocate the copy of the input. Dynamic allocation parameters,

which are allocated in the same way as the dynamically allocated output dataset(s), may be overridden
using DYNARCH DD *. Please refer to “Using Dynamic Allocation with DECOMP” below, and to the
SAMPLIB (ARCHIVE) member for specific information and requirements.

When using ARCHIVE, the user is responsible for preserving the archive file copy, as well as the

decomp.log for future processing. Additionally, TDManager participant records for both sender and
receiver must not be deleted from the database. These participants may have their certificates revoked, in
order to disable their keys, but they must remain as inactive participants to preserve the certificate
information.

Using Dynamic Allocation with DECOMP
DECOMP has the ability to dynamically allocate its output dataset(s). This feature is useful when the input
contains multiple compressed segments, as is the case when multiple workstation files are compressed
into a single file for transmission. Dynamic allocation can be used to separate the files when they are
decompressed at the mainframe. To use dynamic allocation, the compressed segments must contain file
name information (this is the default when files are compressed on the workstation). The embedded file
names are used to build the names of the dynamically allocated datasets. The DATAOT DD statement

should be omitted when using dynamic allocation.

The dynamic allocation feature is invoked when the user provides dynamic allocation control statements
via the SYSIN DD. The control statements describe the format and characteristics used to dynamically

allocate the output datasets. Each control statement contains one or more keywords that define the
output datasets. Most keywords also require a value to be supplied. These parameters are entered in the
form:

KEYWORD=value

Keywords can be entered in any order and on as many input statements as necessary. Separate
keywords with at least one blank or comma. Do not enter keywords past column 72 and do not split a
keyword/value pair across multiple input statements.

TDCompress User Guide

 - 6-49 -

The DSN, LRECL and BLKSIZE keywords are required. Other keywords may be provided as needed.
Valid keywords and their values follow. The default values are underlined:

DSN=xxxxxxxx.xxxxxxxx.xxxxxxxx high-level dsn qualifiers (31 chars max)
DISP=NEW | MOD | OLD initial dataset disposition
NDISP=CATLG | KEEP | DELETE normal dataset disposition (normal EOJ)
CDISP=CATLG | KEEP | DELETE conditional dataset disposition (ABEND)
TRACKS | CYLINDERS | BLKLEN=nnn allocation units
PRIMARY=nnn | 2 primary allocation amount (in above units)
SECONDARY=nnn | 2 secondary allocation amount
RELEASE | NORELEASE release unused space at close
UNIT=xxxxxxxx | SYSALLDA unit for allocation device type
UNITCOUNT=nn | 1 number of units to allocate
BLKSIZE=nnnnn | 0 output block size (must be non-zero)
LRECL=nnnnn | 0 output record length (must be non-zero)
RECFM= FB | VB output record format

DECOMP appends the file name from the compressed input file as additional qualifiers to the high-level

qualifiers supplied in the DSN parameter.

Sample MVS JCL to decompress mainframe data using dynamic allocation follows (note the absence of
the DATAOT DD statement):

//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//DECOMP EXEC PGM=DECOMP,
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DATAIN DD DSN=compressed.input.file,DISP=OLD
//KEYIN DD * <=== required if the compressed data is encrypted
DONTTELL ANYONE!!
//
//SYSIN DD *
DSN=HIGHLVL.QUAL
DISP=NEW NDISP=CATLG CDISP=DELETE
CYLINDERS PRIMARY=10 SECONDARY=5 RELEASE UNIT=SYSDA
BLKSIZE=4100 LRECL=4096 RECFM=VB
//

TDCompress User Guide

 - 6-50 -

Modifying the Default Translation Tables at Run Time
TDCompress contains default EBCDIC-to-ASCII and ASCII-to-EBCDIC translation tables. The user can
modify the tables, at run time, if the defaults are not appropriate for the data being processed. Before
modifying the tables, the user must understand when TDCompress performs the actual translation to/from
EBCDIC/ASCII.

All translation between the EBCDIC and ASCII character sets is performed on the EBCDIC host (for
example MVS). Translation from EBCDIC to ASCII occurs during compression when the ASCII execution
parameter is specified; while translation from ASCII to EBCDIC occurs during decompression if the ASCII
parameter was supplied during data compression (on any platform). This means that the MVS
COMPRESS program contains the default EBCDIC-to-ASCII translation table and the MVS DECOMP
program contains the default ASCII-to-EBCDIC translation table.

The default tables can be modified by supplying alternate translation values for particular bytes via the
TRANUPD DD. The alternate translation values are specified in the following format:

natural value=translated value

In the above format, natural value is the EBCDIC or ASCII value to be translated from and the translated
value is the corresponding ASCII or EBCDIC value to be translated to. Only one pair of natural/translated
values may appear on each record read from the TRANUPD DD. For example, to translate the EBCDIC

character A to the ASCII character zero and the EBCDIC character zero to the ASCII character A, the
following must be included in the COMPRESS JCL:

//TRANUPD DD *
C1=30 EBCDIC 'A' to ASCII '0'
F0=41 EBCDIC '0' to ASCII 'A'
/*

To translate the ASCII character A to the EBCDIC character zero and the ASCII character zero to the
EBCDIC character A, the following must be included in the DECOMP JCL:

//TRANUPD DD *
41=F0 ASCII 'A' to EBCDIC '0'
30=C1 ASCII '0' to EBCDIC 'A'
/*

As many statements as necessary may be provided via the TRANUPD DD to modify the translation tables.

TDCompress User Guide

 - 6-51 -

Below is the default EBCDIC-to-ASCII translation table (displayed in hexadecimal format) used by the
MVS COMPRESS program. To locate the substitute ASCII value for a particular EBCDIC byte, use the
left-most digit of the EBCDIC byte as the row number in the table and the right-most digit of the EBCDIC
byte as the column number. The cell where the row and column intersect contains the ASCII value. For
example, EBCDIC byte X'C1' is translated to ASCII X'41' and EBCDIC X'4D' becomes ASCII X'28'. The
table can be modified at run time by supplying update records via the TRANUPD DD, as described
previously.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

1 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

2 80 81 82 83 84 8E 87 8F 88 89 8A 8B 8C 8D 86 7F

3 90 91 97 93 94 95 96 9C 98 99 9A 9B 9D 85 9E 92

4 20 A0 A1 A2 A3 A4 A5 A6 A7 A8 D5 2E 3C 28 2B 7C

5 26 A9 AA AB AC AD AE AF B0 B1 21 24 2A 29 3B 5E

6 2D 2F B2 B3 B4 B5 B6 B7 B8 B9 E5 2C 25 4F 3E 3F

7 BA BB BC BD BE BF C0 C1 C2 60 3A 23 40 27 3D 22

8 C3 61 62 63 64 65 66 67 68 69 C4 C5 C6 C7 C8 C9

9 CA 6A 6B 6C 6D 6E 6F 70 71 72 CB CC CD CE CF D0

A D1 7E 73 74 75 76 77 78 79 7A D2 D3 D4 5B D6 D7

B D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 5D E6 E7

C 7B 41 42 43 44 45 46 47 48 49 E8 E9 EA EB EC ED

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 EE EF F0 F1 F2 F3

E 5C 9F 53 54 55 56 57 58 59 5A F4 F5 F6 F7 F8 F9

F 30 31 32 33 34 35 36 37 38 39 FA FB FC FD FE FF

Table 1: Default EBCDIC-to-ASCII Translation Table

TDCompress User Guide

 - 6-52 -

Below is the default ASCII-to-EBCDIC translation table table (displayed in hexadecimal format) used by
the MVS DECOMP program. To locate the substitute EBCDIC value for a particular ASCII byte, use the
left-most digit of the ASCII byte as the row number in the table and the right-most digit of the ASCII byte
as the column number. The cell where the row and column intersect contains the EBCDIC value. For
example, ASCII byte X'41' is translated to EBCDIC X'C1' and ASCII X'28' becomes EBCDIC X'4D'. The
table can be modified at run time by supplying update records via the TRANUPD DD, as described

previously.

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

1 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

2 40 5A 7F 7B 5B 6C 50 7D 4D 5D 4C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 2F

8 20 21 22 23 24 3D 2E 26 28 29 2A 2B 2C 2D 25 27

9 30 31 3F 33 34 35 36 32 38 39 3A 3B 37 3C 3E E1

A 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57

B 58 59 62 63 64 65 66 67 68 69 70 71 72 73 74 75

C 76 77 78 80 8A 8B 8C 8D 8E 8F 90 9A 9B 9C 9D 9E

D 9F A0 AA AB AC 4A AE AF B0 B1 B2 B3 B4 B5 B6 B7

E B8 B9 BA BB BC 6A BE BF CA CB CC CD CE CF DA DB

F DC DD DE DF EA EB EC ED EE EF FA FB FC FD FE FF

Table 2: Default ASCII-to-EBCDIC Translation Table

TDCompress User Guide

 - 6-53 -

Using GENKEYS on MVS
The GENKEYS utility reads the EASYACC configuration file from TDManager and creates two output files
— CERTREQ and PRIVKEY. Sample GENKEYS JCL is distributed in the SAMPLIB PDS. Instructions for

running the job and creating your keys are included in the sample JCL.

The PRIVKEY file created by GENKEYS is a permanent key file and must be retained. The CERTREQ file
contains the portion of the key that must be certified by the TDManager. The TDManager Administrator
issues the security run-time files required to transmit secure data. See “Installing the TDManager Run-
time Files” on page 6-44 for a description of the run-time files and details on how to install them.

Securing Formatted EDI Data
To secure formatted-EDI data, both the EDI and either the SECURE or SECUREONLY
run-time options must be specified during compression. The run-time files created by TDManager, as well
as any required passphrase files, must be available.

When TDCompress processes the formatted data, the SENDER and RECEIVER fields from the ISA or
UNB segment, along with the group ID from the GS segment, or the transaction type from the ST or UNH
segment, are used to perform a search in the lookup table. If a record exists in the lookup table with
matching SENDER, RECEIVER, and TRANSACTION values, then the security options specified on the
record are used to secure the data in the EDI envelope.

MVS Example for Securing Formatted EDI Data
//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//COMP EXEC PGM=COMPRESS,PARM='EDI SECUREONLY',
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//COMPLOG DD SYSOUT=*
//DATAIN DD DSN=input.X12.file.to.compress,DISP=OLD
//DATAOT DD DSN=compressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//PUBLKEYS DD DSN=secmgr.cert.fil,DISP=SHR
//PRIVKEYS DD DSN= secmgr.private.fil,DISP=SHR
//SYMKEY DD DSN= secmgr.symkey.fil,DISP=SHR
//CPLOOKUP DD DSN= secmgr.cplookup.tbl,DISP=SHR
//PARTIC DD DSN= secmgr.partic.tbl,DISP=SHR

TDCompress User Guide

 - 6-54 -

Unsecuring Formatted EDI Data
To unsecure formatted-EDI data, the EDI option must be specified during decompression. The
TDManager run-time files as well as any required passphrase files must also be available.

When TDCompress decompresses the secured EDI data, it processes security segments to recover the
random bulk encryption key. It then decrypts and decompresses the data and verifies digital signatures.
Error messages are created if any security features fail.

MVS Example for Unsecuring Formatted EDI Data
//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//COMP EXEC PGM=DECOMP,PARM='EDI',
// REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DCMPLOG DD SYSOUT=*
//DATAIN DD DSN=input.X12.file.to.decompress,DISP=OLD
//DATAOT DD DSN=decompressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//PUBLKEYS DD DSN=secmgr.cert.fil,DISP=SHR
//PRIVKEYS DD DSN=secmgr.private.fil,DISP=SHR
//SYMKEY DD DSN=secmgr.symkey.fil,DISP=SHR
//PARTIC DD DSN=secmgr.partic.tbl,DISP=SHR

Securing Non-EDI Data
To secure non-EDI data, the SECURE or SECUREONLY option must be specified during compression. In
addition, the SECFILE or SENDER/RECEIVER/TRANSID options must be specified during compression.

The run-time files created by TDManager as well as any required passphrase files must also be available.

Non-EDI data does not contain an independently-defined standard header like the ISA segment present
in X12 data, for COMPRESS to get SENDER, RECEIVER and TRANSID values. These values can be
provided by the user via the SENDER, RECEIVER and TRANSID command-line options or keywords in the
SECFILE.

If the non-EDI data contains user-defined header records containing the SENDER, RECEIVER and
TRANSID values, SECFILE keywords can be used to describe the proprietary headers to COMPRESS.
Details for coding the SECFILE are given on page 5-36.

TDCompress User Guide

 - 6-55 -

Unsecuring Non-EDI Data
To unsecure non-EDI data, no special run-time options need to be specified during decompression.
However, the run-time files created by TDManager as well as any required passphrase files must be
available.

When TDCompress decompresses the secured non-EDI data, it processes the S1S segments to recover
the random bulk encryption key; decrypts and decompresses the data; and verifies digital signatures.
Error messages are created when security features fail.

MVS Example for Unsecuring Non-EDI Data
//JOBNAME JOB (ACCOUNT INFO),'USER DATA',CLASS=A,MSGCLASS=X
//COMP EXEC PGM=DECOMP,REGION=1024K
//STEPLIB DD DSN=your.load.library,DISP=SHR
//SYSPRINT DD SYSOUT=*
//DCMPLOG DD SYSOUT=*
//DATAIN DD DSN=input.file.to.decompress,DISP=OLD
//DATAOT DD DSN=decompressed.output.file,DISP=(,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1)),
// LRECL=xxxxx,BLKSIZE=xxxxx,RECFM=xx
//PUBLKEYS DD DSN=secmgr.cert.fil,DISP=SHR
//PRIVKEYS DD DSN=secmgr.private.fil,DISP=SHR
//SYMKEY DD DSN=secmgr.symkey.fil,DISP=SHR
//PARTIC DD DSN=secmgr.partic.tbl,DISP=SHR

Compressing Mainframe Files
A mainframe sequential file is, by default, compressed to an output sequential file. However, many times
the sequential file is composed of logically separate groups of records or segments. For example, a host-
based electronic mail system is used to create messages for several remote users. At some time during
the day, the messages are extracted from the e-mail system into a sequential file. Each group of
messages for a particular remote user, or possibly each individual message, is a logically separated
segment since they must be transmitted to different destinations. Default COMPRESS processing is not

suitable for this situation, since the sequential input file cannot simply be read from beginning to end and
compressed to a single sequential output file. For these situations, bTrade.com provides an API that
allows a user-written program to control the compression process.

TDCompress processes both sequential and partitioned data sets as input. The output must be a
sequential dataset. bTrade.com determines the DSORG of the input and output data sets at execution
time.

TDCompress User Guide

 - 6-56 -

When the input is a PDS, member names are stored as the file name in each compressed member. The
entire PDS is compressed to the sequential output dataset for transmission as a single file. The
decompression program splits the compressed data back into separate files using the original PDS
member name as the file name or member name.

Modifying the Default Translation Tables
Comm-Press contains a default EBCDIC-to-ASCII translation table. The user can modify the table at run
time if the default translation is not appropriate.

All translation between the EBCDIC and ASCII character sets is performed on the EBCDIC host (for
example, MVS or AS/400). Translation from EBCDIC to ASCII occurs during compression when the
ASCII execution parameter is specified. Translation from ASCII to EBCDIC occurs during decompression
if the ASCII parameter was supplied when the data was compressed.

The default table is replaced by providing a file with the desired EBCDIC-to-ASCII translation. The DD
name of the file is specified via the TRANTBL= parameter. The file must contain 256 pairs of characters.
Each pair of characters represent one hexadecimal ASCII byte. The position of each pair is the EBCDIC
value to translate and the value of each pair is the ASCII value to translate to. For example, the first pair
of characters gives the ASCII translation for the EBCDIC value x'00', the second pair gives the ASCII
translation for the EBCDIC value x'01' and so on. The last pair gives the ASCII translation for the EBCDIC
value x'FF'. Spaces or commas can be used to separate the pairs for readability.

Below is the TDCompress default EBCDIC-to-ASCII translation table as it would be entered in a file that is
pointed to by the TRANTBL DD:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 81 82 83 84 8E 87 8F 88 89 8A 8B 8C 8D 86 7F
90 91 97 93 94 95 96 9C 98 99 9A 9B 9D 85 9E 92
20 A0 A1 A2 A3 A4 A5 A6 A7 A8 D5 2E 3C 28 2B 7C
26 A9 AA AB AC AD AE AF B0 B1 21 24 2A 29 3B 5E
2D 2F B2 B3 B4 B5 B6 B7 B8 B9 E5 2C 25 5F 3E 3F
BA BB BC BD BE BF C0 C1 C2 60 3A 23 40 27 3D 22
C3 61 62 63 64 65 66 67 68 69 C4 C5 C6 C7 C8 C9
CA 6A 6B 6C 6D 6E 6F 70 71 72 CB CC CD CE CF D0
D1 7E 73 74 75 76 77 78 79 7A D2 D3 D4 5B D6 D7
D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 5D E6 E7
7B 41 42 43 44 45 46 47 48 49 E8 E9 EA EB EC ED
7D 4A 4B 4C 4D 4E 4F 50 51 52 EE EF F0 F1 F2 F3
5C 9F 53 54 55 56 57 58 59 5A F4 F5 F6 F7 F8 F9
30 31 32 33 34 35 36 37 38 39 FA FB FC FD FE FF

The following MVS JCL fragment shows how to use the TRANTBL= parameter:

TDCompress User Guide

 - 6-57 -

//DECOMP EXEC PGM=DECOMP,PARM='TRANTBL=EBC2ASC',
// REGION=1024K
//EBC2ASC DD DSN=CP.CNTL(EBC2ASC),DISP=SHR

TDCompress User Guide

 - 7-58 -

Chapter 7: VMS Platform

Installation

TK7
The distribution tape (TK70 format) contains the COMPRESS.EXE and DECOMP.EXE programs. The
tape is created with the VMS backup command, and a file saveset of comp.bck. Use the backup
command to copy the two files into the directory that you want to use.

Disk
If you received a 3.5-inch disk, transfer the three files on the disk to the VMS system using kermit with a
file type option of fixed binary for the file COMPRESS.TLB. Execute the EXTRACTX.COM program,
which expands the COMPRESS.TLB file into the COMPRESS and DECOMP executables.

To use the compress software, the following symbols must be added to either the user’s login.com or to
the system wide sylogin.com:

 $ COMP*RESS :== "$ disk:[compress_directory] COMPRESS.EXE
 $ DECOMP*RESS :== "$ disk:[compress_directory] DECOMP.EXE

Where disk and compress_directory are the disk and directories in which TDCompress was installed.

The '*' in the symbol names indicate the minimum characters that may be entered to have the name of
the program recognized.

Note: The $ before the disk and directory name is critical, without it the program will not accept
parameters.

TDCompress User Guide

 - 7-59 -

VMS Operation
TDCompress consists of two programs — COMPRESS.EXE and DECOMP.EXE — which perform data
compression and decompression on VMS version 5.1 or greater, or on OpenVMS 7.1 or greater.

The COMPRESS.EXE and DECOMP.EXE programs must be copied to and executed from a directory on
a hard drive. Fully qualified file names are supported (for example, file paths may be included when
specifying file names). Wildcard characters may be used to specify input and output file masks.

Both COMPRESS.EXE and DECOMP.EXE are invoked by symbols defined in the user’s login procedure
or in the global login procedure. The symbols specify the fully qualified program names, including drive
and directory, and must be used to pass command-line parameters. The following are the suggested
symbols to define:

$ COMP*RESS :== "$ disk:[compress_directory]COMPRESS.EXE
 $ DECOMP*RESS :== "$ disk:[compress_directory]DECOMP.EXE

 Where disk and compress_directory are the disk and directories in which TDCompress was installed.

The '*' in the symbol names indicate the minimum characters that may be entered to have the name of
the program recognized.

The SAVEMODE option preserves the RMS file attributes of the original file as well as the permissions with

two exceptions. System permission is replaced by Owner permission, and those with Write permission
also have Delete permission when the file is decompressed. This is caused by a compatibility issue
between VMS and UNIX permissions.

File attributes such as Record format and attributes, and file organization are preserved in the
decompressed file.

When multiple input files are compressed on VMS, the user has the option to create individual
compressed output files or append the compressed files into a single output file (the files are separated
again when decompressed). Default COMPRESS.EXE processing stores directory information with the
compressed output files, including the file name and extension. This information is used to name the files
when they are decompressed. If the directory information is not needed, then COMPRESS.EXE options
may be used to override the default processing. RECFM and LRECL options are not required to create an

archive containing like files.

Files of different types such as executables and stream files may be stored in the same compressed
archive using the APPEND option. Use the SAVEMODE option to preserve the file attributes, otherwise the
files may be unusable. Use the RECFM=V and LRECL=32767 options during compression in order to
later APPEND two archives containing different file attributes. Do not use the options CRLF and ASCII
with binary files because this produces an unusable file after decompression.

TDCompress User Guide

 - 7-60 -

DECOMP.EXE allows multiple compressed files or segments to exist in the input file. If file name and
extension information is available in the compressed segments, then the segments are separated into
individually decompressed output files using the name and extension information embedded in the
compressed segment. This default processing may be overridden by the user via DECOMP.EXE options.

Compressing on VMS
The format of the COMPRESS command is:

COMPRESS input_file_specification output_file_specification [options]

input_file_specification.ext

The first parameter specifies the input file. If no path is specified then the current directory is searched for
in the input file. The input file name is the only required parameter. By default, COMPRESS.EXE stores
the original input file name and extension in the compressed files. This information is used to name the
files when they are decompressed.

output_file_specification

The second parameter specifies the path, and optionally a file name, for the compressed output file. If no
output path is specified, then the compressed file is written to the current directory. If no output
filename.ext is specified, then the output file retains the name of the input file. If an output filename.ext is
specified then it is used to name the compressed output file. The output file replaces any files in the
output directory that have the same name except when the APPEND option is specified.

See “Compress Options” on page 3-21 for specific options available on the VMS platform.

To supply the secret key and initialization vector in a file, use a hexadecimal editor to create a file and
enter their values. VMS users must define the logical name SYS$COMPRESS to point to the drive and
directory where COMPRESS and DECOMP look for the file named ENCRYPT.KEY. See “Encrypting Data

with TDCompress” on page 2-18.

TDCompress User Guide

 - 7-61 -

Decompressing on VMS
The format of the DECOMP command is:

DECOMP input_file_specification output_file.ext [options]

input_file

The first parameter specifies the input file. If no path is specified then the input file is searched for within
the current directory. The input filename.ext is the only required parameter.

output_file

The second parameter specifies the path, and optionally a file name, for the decompressed output file(s).
If no output path is specified, then the decompressed files are written to the current directory. Output file
names and extensions are obtained from either the directory information embedded in the compressed
input files or from the filename.ext specified on the command line. The embedded file names and
extensions are used to name the output files if such information exists in the compressed input. Note that
the embedded information is used even if the filename.ext parameter is supplied on the command line,
unless the NOINFO option is specified. The NOINFO option causes DECOMP.EXE to ignore any
embedded file name and extension information.

If no embedded directory information is contained in the compressed input files, or if the NOINFO option is

specified, then the filename.ext command-line parameter is used to name the output files. If no output
filename.ext is specified, then the output file retains the name of the input file. In any case, the output files
will replace any files in the output directory that have the same name except when the APPEND option is

also specified.

DECOMP.EXE looks for a compression signature in each input file. If an input file does not contain a valid
compression signature then DECOMP.EXE simply bypasses the file and continues processing with the
next input file. See “Error! Reference source not found.” Error! Bookmark not defined. for specific
options available for the VMS platform.

VMS Examples
Below are some examples of commands to compress data on VMS:

compress compwork.txt [.compout] ascii crlf

This command compresses COMPWORK.TXT in the current directory. The input file is compressed into
the COMPOUT directory and the output file retains the original input file name. The VMS directory
information is embedded in the compressed file and may be used to name the decompressed file.

TDCompress User Guide

 - 7-62 -

compress data.txt data.cmp ascii crlf append noinfo

This example appends DATA.TXT to DATA.CMP, a single output file from multiple input files (the APPEND
option has been added), and the NOINFO option has also been specified. This causes COMPRESS.EXE

to omit directory information in the compressed output.

compress data.txt data.cmp ascii crlf delete

This command compresses DATA.TXT to DATA.CMP in the current directory and will contain the original
input file name. The original input file will be deleted after it is compressed.

Below is an example of decompressing data on VMS:

decomp comp.cmp delete

This command decompresses COMP.CMP in the current directory. The decompressed output files are
written to the current directory. The output file names are obtained from the embedded directory
information that was supplied by default COMPRESS.EXE processing. The input file COMP.CMP is
deleted after the decompression.

Creating archives for like files:

compress [.mixed]*.exe exe.compressed savemode
compress [.mixed]*.com com.compressed savemode crlf ascii

Creating archives containing different file types:

compress [.mixed]*.exe mixed_appended.compressed savemode - recfm=v lrecl=32767
compress [.mixed]*.com mixed_appended.compressed append - savemode crlf ascii

TDCompress User Guide

 - 8-63 -

Chapter 8: Windows 95/98/NT
Platforms

Installation

Diskette or CD
1. Insert the TDCompress disk or CD into the appropriate drive.

2. From a DOS Command window or the Explorer create a directory to store the TDCompress
software. Copy the files from the diskette into the new directory.

For example:

md c:\commprss
copy a:*.* c:\commprss

3. Run the self-extracting .exe file to decompress the TDCompress executables, libraries and
sample programs.

Installing the TDManager Run-time Files

Using IMPORT on Windows 95/98/NT
To complete the security configuration, install the run-time files generated by the TDManager. The run-
time files are distributed as a single, compressed and encrypted file. The IMPORT utility installs the run-

time files. Passphrase files are created with the paths and file names that were entered in TDManager.

1. cd to the TDCompress directory

cd \comm-press

2. Type import and press Enter to begin the run-time installation.

IMPORT prompts for the name of the compressed run-time file received from the TDManager.

TDCompress User Guide

 - 8-64 -

3. Type the name and path of the file and press Enter.

IMPORT prompts for the name of the directory where the run-time files are to be installed.

• It is recommended to install the run-time files in the TDCompress directory, however,
they can be placed in another directory. They must either be in the current directory
when the TDCompress programs are run, or the RUNTIMEPATH command-line
option or environment variable must be used to give the name of the directory.

4. Type the directory name and press Enter.

IMPORT prompts for the approval code — a 16-character value provided by the TDManager that
protects the run-time files from unauthorized access. If you do not know your approval code, then
contact the TDManager Administrator.

5. Type the 16-character approval code and press Enter.

IMPORT prompts for the directory where the GENKEYS utility created the private.key file.

• Respond with the directory name.

• If an RSA keypair was not generated with the GENKEYS utility then press Enter.

6. The four prompts described previously can be avoided by providing the following information on
the command line:

import runtime.rtm \cpdir key=0123456789ABCDEF privkey=\cpdir

Installation of the run-time files completes the security configuration. See “Securing Data Using
TDCompress” on page 2-12 for details on securing files using TDCompress.

PC Operation
TDCompress contains two PC programs — COMPRESS.EXE and DECOMP.EXE — which perform data
compression and decompression on an IBM PC, or compatible, running Windows 95/98 or NT, DOS
version 6.0 or greater, or OS/2 version 3.0 or greater.

The COMPRESS.EXE and DECOMP.EXE programs may be copied to and executed from a directory on
a hard drive, or they may be executed from diskette. Fully qualified file names are supported. For
example, paths (subdirectories) may be included when specifying file names, and the DOS wildcard
characters may be used to specify input and output file masks. In Windows, the programs are executed
from an MS-DOS window, Run dialog box, or by creating shortcuts.

TDCompress User Guide

 - 8-65 -

When multiple input files are compressed on the PC, the user has the option of creating individual
compressed output files or appending the compressed files into a single output file (the files will be
separated again when decompressed). Default COMPRESS.EXE processing stores the file names and
extensions of the input files in the compressed files. This information is used to name the files when they
are decompressed. The DIRNAME option may be used to store the full paths of the input files along with
the filenames and extensions. If directory information is not needed, then the NOINFO option may be

used to prevent any information from being stored in the compressed files.

By default, COMPRESS.EXE only compresss files that are in the subdirectory specified on the command
line (or in the current directory if a full path is not given). The RECURSE option causes COMPRESS.EXE
to compress matching input files in all subdirectories below the starting directory. The DIRNAME option is
automatically invoked when the RECURSE option is specified.

If the data is delimited by carriage return/line feed pairs, then certain input records can be left
uncompressed in the output. This is done by using the PF=fn option during compression. The file name

(fn) is the name of a parameter file used by COMPRESS.EXE to identify input records that are to be left
uncompressed. Further information on using the PF=fn option is given in “Compress Options” on page

3-21.

EDI-formatted data can be compressed by specifying the EDI option during compression. This option
causes COMPRESS.EXE to leave the header and trailer records that mark the beginning and end of an
EDI envelope uncompressed. COMPRESS.EXE also ensures that no characters exist in the compressed
data that could be misinterpreted as EDI control characters. Further information on using the EDI option
is given in “Compress Options” on page 3-21.

DECOMP.EXE allows multiple compressed files or segments to exist in the input file. If file name and
extension information is available in the compressed segments, then the segments are separated into
individually decompressed output files using the name and extension information embedded in the
compressed segment. This default processing may be overridden by the user via DECOMP.EXE options.

Compressing on the PC (DOS, OS/2 and Windows)
The format of the COMPRESS command is:

COMPRESS [d:\path\]infile.ext [d:\path[\outfile.ext]] [options]

[d:\path\]infile.ext

The first parameter specifies the input file(s). Multiple input files may be compressed during a single
execution by using the wildcard characters to create a file mask. If no path is specified then the current
directory is searched for the input files. The input infile.ext is the only required parameter.

[d:\path[\outfile.ext]]

The second parameter specifies the path and optionally an outfile.ext, for the compressed output file(s). If
no output path is specified, then the compressed files is written to the current directory.

TDCompress User Guide

 - 8-66 -

If no output filename.ext is specified, then the output files retain the names of the input files. If an output
filename.ext is specified then it is used to name the compressed output file. Wildcard characters may be
used to create a file mask to uniquely name the output files. The output files replace any files in the output
directory that have the same name except when the APPEND option is specified.

By default, COMPRESS.EXE stores the original input file name and extension in the compressed files.
This information is used to name the files when they are decompressed.

See “Compress Options” on page 3-21 for specific options available for the PC.

Decompressing on the PC (DOS, OS/2 and Windows)
The format of the DECOMP command is:

DECOMP [d:\path\]infile.ext [d:\path[\outfile.ext]] [options]

[d:\path\]infile.ext

The first parameter specifies the input file(s). Multiple input files may be decompressed during a single
execution by using the wildcard characters to create a file mask. If no path is specified then the current
directory is searched for the input files. The input filename.ext is the only required parameter.

[d:\path[\outfile.ext]]

The second parameter specifies the path and optionally a file name, for the decompressed output file(s).
If no output path is specified, then the decompressed files are written to the current directory.

Output file names and extensions are obtained from either the directory information embedded in the
compressed input files or from the filename.ext specified on the command line. The embedded file names
and extensions are used to name the output files if such information exists in the compressed input.
Filename.ext overides the embedded file name. The NOINFO option causes DECOMP.EXE to ignore any

embedded file name and extension information.

[options]

If the compressed input files contain full paths (for example, including the original input subdirectory
names), then the DIRNAME option may be used to decompress the files into the same subdirectories.
The path names stored in the compressed files are appended to the output path name specified on the
command line, or to the current directory, to generate the actual path names for the decompressed output
files. If a path does not exist, then it is automatically created.

If no embedded directory information is contained in the compressed input files, or if the NOINFO option is

specified, then the filename.ext command-line parameter is used to name the output files. Wildcard
characters may be used to create a file mask to uniquely name the output files. If no output filename.ext
is specified, then the output files retain the names of the input files. In any case, the output files replace
those in the output directory that have the same name except when the APPEND option is specified.

TDCompress User Guide

 - 8-67 -

DECOMP.EXE looks for a compression signature in each input file. If an input file does not contain a valid
compression signature then DECOMP.EXE simply bypasses the file and continues processing with the
next input file. If the UNCOMP parm is used, then DECOMP copies the uncompressed file to the output

directory.

See “Decompress OptionsError! Reference source not found.” Error! Bookmark not defined. for
specific options available for the PC.

PC Compression/Decompression Examples
Below are some examples of commands to compress/decompress data on the PC (assume a directory
named COMPWORK exists on the current drive):

compress . *\compwork ascii crlf

This command compresses all files in the current directory. Each input file is compressed into a separate
output file in the COMPWORK directory and the output files retain the original input file names. ASCII-to-
EBCDIC translation takes place when the files are decompressed on the mainframe or AS/400. Carriage
return/line feed sequences are used to delimit the input records and are removed when the files are
decompressed on the mainframe. The PC directory information is embedded in the compressed files.

compress . *\compwork*.cmp ascii crlf

This command causes the same processing as the previous example except this command specifies an
output file mask. In this example the output files retain the input file names, but carry a .CMP extension.

compress . *\compwork\data.cmp ascii crlf

In this example multiple input files are specified, but only one output file, DATA.CMP, is created. An
implicit append operation takes plac e so that DATA.CMP contains all the compressed input files. Note
that DATA.CMP is replaced if it exists prior to COMPRESS processing (use APPEND if DATA.CMP is not to

be replaced).

compress . *\compwork\data.cmp ascii crlf append noinfo

This example creates a single output file from multiple input files (the APPEND option has been added),
using the NOINFO option. Consequently, COMPRESS.EXE does not include directory information in the
compressed output, so that the compressed files cannot be separated int o multiple output files when they
are decompressed.

compress a:\source*.txt ascii crlf delete

This command compresses all the files that are in the SOURCE directory on drive A: and have a .txt
extension. The files are compressed into the current directory and retain the original input file names. The
original input file is deleted after compression.

Below are some examples of decompressing data on the PC.

decomp . *\compwork delete

TDCompress User Guide

 - 8-68 -

This command decompresses all files in the current directory and writes the decompressed output file to
the COMPWORK directory. The output file names are obtained from the embedded directory information
that was supplied by default COMPRESS processing. If no embedded directory information exists, then the

output files retain the names of the compressed input files.

decomp . *\compwork noinfo

This command again decompresses all files in the current directory. The NOINFO options causes DECOMP

to ignore any embedded directory information. Therefore, the output files retain the names of the
compressed input files.

decomp . *\compwork noinfo delete

This command adds the DELETE function to the previous example. Consequently, the input files are
deleted after they are decompressed.

Compressing PC/Workstation Files
Compression on the PC operates much like the DOS COPY command as far as file handling is
concerned. Input and output PC file names are specified on the command line. DOS wildcard characters
may be used to mask the input and output file names. Multiple input files can be compressed into a single
output file or as individual output files. By default, the file name and extension of each input PC file are
stored in the compressed file. This information is used to name the files when they are decompressed at
a workstation. If the compressed PC data is decompressed on the mainframe, then the mainframe
decompression program can separate the compressed PC files into individual sequential files or PDS
members. The dynamically allocated sequential files containing the decompressed data are named using
stored PC file names and extensions; whereas its decompressed PDS members use a PC file name
without the extension. Decompression using dynamic allocation and output PDS processing is specified
by execution parameters in the JCL.

Using GENKEYS On Windows 95/98/NT
The GENKEYS utility reads the easyacc.ini configuration file from TDManager and creates two output
files — CERTREQ and private.key. Follow the steps below to generate the RSA encryption keys:

1. cd to the TDCompress directory

cd /usr/comm-press

2. Run the GENKEYS utility.

• GENKEYS prompts for random input data.

TDCompress User Guide

 - 8-69 -

3. Type several lines of random characters to ensure the keys are hard to break.

4. Press Enter on a blank line to complete the random entry.

• GENKEYS writes the private.key and CERTREQ files in the TDCompress directory.

The private.key file created by GENKEYS is permanent and must be retained. The CERTREQ file

contains the portion of the key that must be certified by the TDManager. The TDManager Administrator
issues the security run-time files required to transmit secure data. See “Installing the TDManager Run-
time Files” on page 8-63 for a description of the run-time files and details on their installation.

The syntax of the GENKEYS command on the workstation is:

genkeys path=\path passloc=platform.specific.filename <random.data.file

Input to GENKEYS
The path= parameter points to the directory containing the TDAccess configuration file created by
TDManager. This file must be named easyacc.ini. The configuration file specifies the user’s X.500
distinguished name as well as the modulus size and expiration interval to use when generating the RSA
keys. GENKEYS writes its output files to the same path.

The optional passloc= parameter specifies the name of the passphrase location file. This file is where
the IMPORT job stores random pass-phrases used to encrypt the private key. (See Installing the
TDManager Run-time Files ” on page 8-63.) The use of the passloc= parameter, although optional, is

intended to provide an additional point of security for the private key. If no passphrase location is
provided, then the passphrase is stored with the private key. The last parameter uses the STDIN
redirection symbol to provide random data from a file. This data is hashed and used to seed the pseudo-
random number generator of GENKEYS. It is recommended that some unpredictable data be provided
each time that GENKEYS is run. If this parameter is omitted, then GENKEYS waits for Enter to be pressed

at the workstation before continuing.

TDCompress User Guide

 - 8-70 -

Output from GENKEYS
The private key generated by GENKEYS is written to a file named privarch.fil in a security directory
under the directory specified by the path= parameter (path/security). The private key is appended to
a previously generated private key. It is important that the privarch.fil file is retained for at least as
long as the RSA key pair expiration interval. The privarch.fil file is used later by the IMPORT job to

install the security run-time files from the TDManager. (See “Installing the TDManager Run-time Files” on
page 8-63.)

The public key generated by GENKEYS is written to a file named certreq.fil in the same directory
where the privarch.fil is written. The public key is stored as a PEM-formatted certificate request and
must be certified by the TDManager before it can be used. Typically, certreq.fil is sent via email or
FTP to the TDManager where it is imported and certified. The certificate is returned as part of the security
run-time files that are created by TDManager and imported by the IMPORT job. (See Installing the
TDManager Run-time Files ” on page 8-63.) Although GENKEYS appends the public key to any previously
generated keys, there is no need to retain certreq.fil once the TDManager has imported and certified
the request. Informational and error messages from GENKEYS are written to STDOUT.

Securing Formatted EDI Data
To secure formatted EDI data, both the EDI and either the SECURE or SECUREONLY

run-time options must be specified during compression. The run-time files created by TDManager as well
as any required passphrase files, must be available.

When TDCompress processes the formatted data, the SENDER and RECEIVER fields from the ISA or

UNB segment, along with the group ID from the GS segment, or the transaction type from the ST or UNH
segment, are used to perform a search in the lookup table. If a record exists in the lookup table with
matching SENDER, RECEIVER, and TRANSACTION values, then the security options specified on the

record are used to secure the data in the EDI envelope.

PC Example for Securing Formatted EDI Data
The command below is an example of how to compress and secure a file (X12EDI.FIL) containing
formatted EDI data (X12-format). It will be compressed/secured into a file named X12EDI.CMP in the
COMPWORK directory. The run-time files must be in the current directory, unless the RUNTIMEPATH

environment variable has been set. The compress.log file is written to the current directory, unless the
LOGPATH environment variable has been set.

Compress x12edi.fil \compwork\x12edi.cmp edi secureonly

TDCompress User Guide

 - 8-71 -

Unsecuring Formatted EDI Data
To unsecure formatted EDI data, the EDI option must be specified during decompression. The
TDManager run-time files as well as any required passphrase files must be available.

When TDCompress decompresses the secured EDI data, it processes security segments to recover the
random bulk encryption key. It then decrypts and decompresses the data and verifies digital signatures.
Error messages are created if any security features fail.

PC Example using ARCHIVE with Secure Formatted EDI Data
The following command is an example of how to decompress and archive a file containing EDIFACT EDI
data. In the example, the file EDIFACT.CMP contains authenticated EDIFACT formatted EDI data. It will
be decompressed into a file named EDIFACT.DCM in the DCMPWORK directory. The run-time files must
be in the current directory, unless the RUNTIMEPATH environment variable has been set. The decomp.log
file is written to the current directory, unless the LOGPATH environment variable has been set. Note that
the decomp.log is copied and appended into the archive.log file to be available for future use.

decomp edifact.cmp \dcmpwork\edifact.dcm edi archive=c:\save
rename c:\save\archive.log c:\save\archiveold.log
copy c:\save\archiveold.log+c:\compress\compress.log c:\save\archive.log

When using the ARCHIVE parameter, it is the responsibility of the CA (TDManager) administrator to retain

certificate information for affected participants. For this reason, the administrator may revoke the
certificates for these participants, but may not delete the participant (deleting a participant removes
expired and revoked certificates, which are required for the authentication process).

PC Example for Unsecuring Formatted EDI Data
The following command is an example of how to decompress a file containing X12 EDI data. In the
example, the file X12EDI.CMP contains compressed/secured X12-formatted EDI data. It is decompressed
into a file named X12EDI.DCM in the DCMPWORK directory. The run-time files must be in the current
directory, unless the RUNTIMEPATH environment variable has been set. The decomp.log file is written to
the current directory, unless the LOGPATH environment variable has been set.

decomp x12edi.cmp \dcmpwork\x12edi.dcm edi

TDCompress User Guide

 - 8-72 -

Securing Non-EDI Data
To secure non-EDI data, the SECURE or SECUREONLY option must be specified during compression. In
addition, the SECFILE or SENDER/RECEIVER/TRANSID options must be specified during compression.

The run-time files created by TDManager as well as any required passphrase files must be available.

Non-EDI data does not contain an independently defined standard header, like the ISA segment present
in X12 data, for COMPRESS to get SENDER, RECEIVER and TRANSID values. These values can be
provided by the user via the SENDER, RECEIVER and TRANSID command-line options or keywords in the
SECFILE.

If the non-EDI data contains user-defined header records containing the SENDER, RECEIVER and
TRANSID values, SECFILE keywords can be used to describe the proprietary headers to COMPRESS.
Details for coding the SECFILE are given on page 5-39.

Unsecuring Non-EDI Data
To unsecure non-EDI data, special run-time options do not need to be specified during decompression.
However, the run-time files created by TDManager, as well as any required passphrase files, must be
available.

When TDCompress decompresses the secured non-EDI data, it processes the S1S segments to recover
the random bulk encryption key, then decrypts and decompresses the data. Digital signatures are
verified and error messages are generated if security features fail.

PC Example for Unsecuring Non-EDI Data
The following command is an example of how to decompress a file containing non-EDI data. In the
example, the file DATA.CMP contains compressed/secured non-EDI data. It will be decompressed into a
file named DATA.DCM in the DCMPWORK directory. The run-time files must be in the current directory,
unless the RUNTIMEPATH environment variable has been set. The 'decomp.log' file is written to the
current directory, unless the LOGPATH environment variable has been set.

DECOMP DATA.CMP \DCMPWORK\DATA.DCM EDI

TDCompress User Guide

 - 8-73 -

Compressing EDI-Formatted Data
The compression programs on all supported platforms provide a run-time option that can be used to
compress EDI-formatted data. X12, UN/TDI, UCS EDI data, and EDIFACT formats are supported. The
EDI option automatically leaves the header and trailer segments uncompressed in the output file. This

information must not be compressed so the network can deliver the data correctly. Compressed EDI data
can be sent and received using the appropriate SEND/RECEIVE EDI commands of the user’s

communication software.

The above scenarios show only a few of the ways TDCompress can be used to compress data. Other
options enable TDCompress to adapt to almost any environment.

TDCompress User Guide

 - 9-74 -

Chapter 9: UNIX/AIX Platform

Installation

Diskette/Tape
The .sfx file is the self-extracting, TDCompress file in UNIX format.

1. Create a directory to store the TDCompress software. For example:

mkdir /usr/commprss
cd /usr/commprss

2. Copy the file into the directory on the UNIX system via one of the following methods:

• Tar from UNIX-formatted diskette or tape.

• FTP from e-mail or Windows-formatted CD.

3. Ensure the user has read/write/execute authority.

4. Change the mode on the self-extracting .sfx file so that it can be executed:

chmod +X *.sfx

5. Execute the file to expand it into its product files — executables, libraries and sample programs.

TDCompress User Guide

 - 9-75 -

Installing the TDManager Run-time Files

Using IMPORT on UNIX
To complete the security configuration, install the run-time files generated by the TDManager. The run-
time files are distributed as a single, compressed and encrypted file. The IMPORT utility installs the run-

time files. Passphrase files are created with the paths and file names that were entered in TDManager.

1. cd to the TDCompress directory.

cd /comm-press

2. Type import and press Enter to begin the run-time installation.

IMPORT prompts for the name of the compressed run-time file received from the TDManager.

3. Type the name and path of the file and press Enter.

IMPORT prompts for the name of the directory where the run-time files are to be installed.

• It is recommended to install the run-time files in the TDCompress directory; however,
they can be placed in another directory. They must either be in the current directory
when the TDCompress programs are run, or the RUNTIMEPATH command-line
option or environment variable must be used to give the name of the directory.

4. Type the directory name and press Enter.

IMPORT prompts for the approval code — a 16-character value provided by the TDManager that
protects the run-time files from unauthorized access. If you do not know your approval code, then
contact the TDManager Administrator.

5. Type the 16-character approval code and press Enter.

IMPORT prompts for the directory where the GENKEYS utility created the private.key file.

• Respond with the directory name.

• If an RSA keypair was not generated with the GENKEYS utility then press Enter.

TDCompress User Guide

 - 9-76 -

6. The four prompts described previously can be avoided by providing the following information on
the command line:

import runtime.rtm /cpdir key=0123456789ABCDEF privkey=/cpdir

Installation of the run-time files completes the security configuration. See “Securing Data Using
TDCompress” on page 2-12 for details on securing files using TDCompress.

UNIX Operation
TDCompress contains two UNIX programs — COMPX and DECOMPX — that perform data compression
and decompression on UNIX operating systems.

The programs read a list of fully qualified file names from standard input and compress/decompress the
files as specified by other command-line options. When multiple input files are compressed, the user has
the option of creating individual compressed output files or appending them to a single file (the files are
separated when decompressed). Default COMPX processing stores the file name with the compressed
output files. This information is used to name the files when they are decompressed. The DIRNAME
option may be used to store the full paths of the input files (for example, all subdirectories) along with the
file names. If directory information is not needed, then the NOINFO option may be used to prevent any

information from being stored in the compressed files.

If the data is delimited by line feeds, then certain input records can be left uncompressed in the output.
This is done by using the PF=fn option during compression. The file name is the name of a parameter

file used by COMPX to identify input records that are to be left uncompressed. Further details are given in
“Compressing on UNIX/AIX” on page 9-77.

EDI data can be compressed by specifying the EDI option during compression. This option causes

COMPX to automatically leave the header and trailer records that mark the beginning and end of an EDI
envelope uncompressed. COMPX also ensures that no characters exist in the compressed data that
could be misinterpreted as EDI control characters.

DECOMPX allows multiple compressed files or segments to exist in the input file. If the file names are
available in the compressed segments, then the segments are separated into individually decompressed
output files using the name embedded in the compressed segment. This default processing may be
overridden by the user via DECOMPX options.

TDCompress User Guide

 - 9-77 -

Compressing on UNIX/AIX
The format of the COMPX command is:

compx [[/path/]outfile] [options]

COMPX reads a list of fully qualified file names from standard input. Each input file in the list is
compressed according to the command-line options specified and written to the output file. The list of
input files can be generated by a Find command that is piped to COMPX, or the user may use an editor to
create a file containing the list and then invoke COMPX redirecting STDIN to the file.

COMPX parameters may be specified in any order. All options are reserved, keyword options that may
not be used as the output file name unless a full path is specified. The first parameter that is not
recognized as a valid option is interpreted by COMPX to be the path and optional file name, for the
compressed output file(s). If an output path is not specified, then the compressed files are written to the
current directory. If a name is not specified, then the output files retain the names of the input files. If an
output file name is specified then it is used to name the compressed output file, and all the input files are
compressed into a single output file, then separated when decompressed. The output files replace any
files in the output directory that have the same name except when the APPEND option is specified.

By default, COMPX stores the original input file name in the compressed files. This information is used to
name the files when they are decompressed.

See “Compress Options” on page 3-21 for specific options available for the UNIX platforms.

Decompressing on UNIX/AIX
The format of the DECOMPX command is:

decompx [/path/[outfile]] [options]

DECOMPX reads a list of fully qualified file names from standard input. Each input file in the list is
decompressed according to the command-line options specified and written to the output file. The list of
input files can be generated by a FIND command that is piped to DECOMPX, or the user may use an
editor to create a file containing the list and then invoke DECOMPX redirecting STDIN to the file.

DECOMPX parameters may be specified in any order. All options are reserved, keyword options and may
not be used as the output file name unless a full path is specified. The first parameter that is not
recognized as a valid option is interpreted by DECOMPX to be the path and optional file name, for the
decompressed output file(s). If no output path is specified, then the decompressed files are written to the
current directory.

Output file names are obtained from either the directory information embedded in the compressed input
files or from the file name specified on the command line. The embedded file names are used to name
the output files if such information exists in the compressed input. Note that the embedded information is
used even if the file name parameter is supplied on the command line, unless the NOINFO option is also
specified. The NOINFO option causes DECOMPX to ignore any embedded file name and extension
information.

TDCompress User Guide

 - 9-78 -

If the compressed input files contain full paths (for example, including the original input subdirectory
names), then the DIRNAME option may be used to decompress the files into the same subdirectories. The
paths stored in the compressed files are appended to the output path specified on the command line, or
to the current directory, to generate the actual paths for the decompressed output files. If a path does not
exist, then it is automatically created.

If no embedded directory information is contained in the compressed input files, or if the NOINFO option is

specified, then the file name command-line parameter is used to name the output file. If an output file
name is not specified, then the output files retain the names of the input files. In any case, the output files
will replace any files in the output directory that have the same name except when the APPEND option is

also specified.

DECOMPX looks for a compression signature in each input file. If an input file does not contain a valid
compression signature then DECOMPX simply bypasses the file and continues processing with the next
input file. If the UNCOMP parm is used, then DECOMPX copies the uncompressed file to the output

directory.

UNIX/AIX Examples
Below are some examples of commands to compress data under UNIX and AIX (assume a directory
named /compwork exists on the current drive):

find ./* -name '*' -print | compx /compwork ascii crlf

This command compresses all files in the current directory. Each input file is compressed into a
separate output file in the /compwork directory and the output files retain the original input file names.
ASCII-to-EBCDIC translation takes place when the files are decompressed on the mainframe. Line
feeds are used to delimit the input records but are removed when the files are decompressed on the
mainframe. The directory information is embedded in the compressed files and may be used to name
the decompressed files.

find ./* -name '*' -print | compx /compwork/data.cmp ascii crlf

In this example, multiple input files are specified, but only one output file — data.cmp — is created.
An implicit append operation takes place so that data.cmp will contain all the compressed input files.
Note that data.cmp is replaced if it already exists prior to COMPX processing (the APPEND option

should be used if data.cmp is not to be replaced).

find ./* -name '*' -print | compx /compwork/data.cmp ascii crlf append noinfo

This example creates a single output file from multiple input files—by adding the APPEND option. It

does not contain directory information in the compressed output from COMPX as specified by the
NOINFO option.

find /source -name '*'.txt -print | compx ascii crlf delete

This command compresses all the files in the /source directory that end with .txt and retains their

original input file names. The original input fi les are deleted after they are compressed.

TDCompress User Guide

 - 9-79 -

ls –1 /home/datain/*.txt | compx /compwork ascii crlf

This example uses the ls command instead of Find. Note that the input path must be fully qualified,
even though the files are in the current directory.

Below are examples of decompressing data on UNIX/AIX:

find ./* -name '*' -print | decompx /dcmpwork delete

This command decompresses all files in the current directory and writes them to the /dcmpwork
directory. The output file names are obtained from the embedded directory information supplied by
default COMPX processing. If no embedded directory information exists, then the output files retain
the names of the compressed input files.

find ./* -name '*' -print | decompx /dcmpwork noinfo

This command again decompresses all files in the current directory. The NOINFO option causes

DECOMPX to ignore any embedded directory information. Therefore, the output files retain the
names of the compressed input files.

find ./* -name '*' -print | decompx /dcmpwork noinfo delete

This command adds the Delete function to the previous example, which deletes the input files after
they are decompressed.

ls -1 home/compwork/*.cmp | decompx /dcmpwork

This example uses the ls command instead of the Find. Note that the input file path must be fully
qualified, even though the files are in the current directory.

Using GENKEYS on UNIX
The GENKEYS utility reads the easyacc.ini configuration file from TDManager and creates two output
files — CERTREQ and private.key. Follow the steps below to generate the RSA encryption keys:

1. cd to the TDCompress directory.

cd /usr/comm-press

2. Run the GENKEYS utility.

• GENKEYS prompts for random input data.

3. Type several lines of random characters to ensure the keys are hard to break.

4. Press Enter on a blank line to complete the random entry.

• GENKEYS writes the private.key and CERTREQ files in the TDCompress directory.

TDCompress User Guide

 - 9-80 -

The private.key file created by GENKEYS is a permanent key file and must be retained. The CERTREQ

file contains the portion of the key that must be certified by the TDManager. The TDManager
Administrator issues the security run-time files required to transmit secure data. See “Installing the
TDManager Run-time Files ” on page 9-75 for a description of the run-time files and details on their
installation.

The syntax of the GENKEYS command on the workstation is:

genkeys path=/path passloc=platform.specific.filename <random.data.file

TDCompress User Guide

 - 9-81 -

Input to GENKEYS
The path= parameter points to the directory containing the TDAccess configuration file created by
TDManager. This file must be named easyacc.ini. The configuration file specifies the user’s X.500

distinguished name as well as the modulus size and expiration interval to use when generating the RSA
keys. GENKEYS writes its output files to the same path.

The optional passloc= parameter specifies the name of the passphrase location file, which is where the

IMPORT job stores the random passphrase used to encrypt the private key. (See “Installing the
TDManager Run-time Files ” on page 9-75.) Use of the parameter, although optional, is intended to
provide an additional point of security for the private key. If a passphrase location is not provided, then
the passphrase is stored with the private key. The last parameter uses the STDIN redirection symbol to
provide random data from a file. This data is hashed and used to seed the pseudo-random number
generator of GENKEYS. It is recommended that some unpredictable data be provided each time that
GENKEYS is run. If STDIN redirection is not used, then GENKEYS waits for random data input from the
keyboard. Pressing Enter on a blank line ends the input and GENKEYS continues.

Output from GENKEYS
The private key generated by GENKEYS is written to a file named privarch.fil in a /security directory
under the directory specified by the path= parameter (path/security). The private key is appended to
a previously generated private key. It is important that the privarch.fil file is retained for at least as
long as the RSA key pair expiration interval. The privarch.fil file is used later by the IMPORT job to

install the security run-time files from the TDManager. (“Installing the TDManager Run-time Files” on page
9-75.)

The public key generated by GENKEYS is written to a file named certreq.fil in the same directory
where the privarch.fil was written. The public key is stored as a PEM-formatted certificate request
and must be certified by the TDManager before it can be used. Typically, certreq.fil is sent via email
or FTP to the TDManager where it is imported and certified. The certificate is returned as part of the
security run-time files that are created by TDManager and imported by the IMPORT job. (See “Installing
the TDManager Run-time Files” on page 9-75.) Although GENKEYS appends the public key to any
previously generated keys, there is no need to retain certreq.fil once the TDManager has imported
and certified the request. Informational and error messages from GENKEYS are written to STDOUT.

TDCompress User Guide

 - 10-82 -

Chapter 10: OS/400 Platform

Installation

Diskette
Installation of TDCompress from diskette requires TCP/IP and the FTP server to be installed and
configured on OS/400. The TDCompress software is distributed as a saved library in SAVEFILE format.
Do the following to install the software:

1. Create an empty save file on the AS/400. For example: CRTSAVF SAVEFILE

2. Upload the TDCompress save file into the new AS/400 save file using binary mode FTP. For
example:

ftp 2.72.125.43 <= connect to AS/400
220 User (as/400:(none)): userid <= enter USERID
331 Enter password. <= enter PASSWORD
230 USERID logged on.
ftp> bin <= binary mode
220 Representation type is binary IMAGE.
ftp> put cplib.savf SAVEFILE <= transfer save file
200 PORT subcommand request successful.
150 Sending file to member SAVEFILE in file SAVEFILE.
250 File transfer completed successfully.
ftp> quit <= disconnect

3. Restore the TDCompress library from the save file. For example:

RSTLIB SAVLIB(CPLIB) DEV(*SAVF) SAVF(SAVEFILE)

Tape
Type the following command to unload the TDCompress library from the distribution tape:

RSTOBJ OBJ(*ALL) SAVLIB(CPLIB) DEV(TAPxx) RSTLIB(xxxxxxx)

Substitute correct values for DEV and RSTLIB. Substitute the library name printed on the tape’s external
label with the name of the SAVLIB library.

TDCompress User Guide

 - 10-83 -

Installing the TDManager Run-time Files

Using IMPORT on OS/400

To complete the security configuration, you must install the run-time files generated by the TDManager.
The run-time files are distributed as single, compressed and encrypted files. The IMPORT utility installs
the run-time files:

1. Make the TDCompress library the current library:
CHGCURLIB CPLIB

2. Call IMPORT to begin the run-time installation:

CALL IMPORT

• IMPORT prompts for the name of the compressed run-time file received from TDManager. If
the file cannot be located via the LIBLIST, then enter the name using the
LIBRARY/FILENAME format. Otherwise, enter the filename.

• IMPORT prompts for the name of the library where the security run-time files are to be
installed. Respond with the name of the TDCompress library.

• IMPORT prompts for the approval code. This is a 16-character value provided by the

TDManager that protects the run-time files from unauthorized access. If you do not know your
approval code, then contact the TDManager Administrator.

• IMPORT prompts for the library where the GENKEYS utility created the privkey file. Respond
with the library name. (If you did not generate your RSA keypair with the GENKEYS utility, then
press Enter.)

3. The four prompts described previously can be avoided by providing all the information on the
CALL. The following is an example:

CALL IMPORT PARM('RTMFILE' 'CPLIB' 'KEY=0123456789ABCDEF' 'PRIVKEY=CPLIB441')

Installation of the run-time files completes the security configuration. See “Securing Data Using
TDCompress” on page 2-12 for details on securing files using TDCompress.

AS/400 Operation
TDCompress for the AS/400 is distributed as two programs — COMPRESS and DECOMP. To execute the

programs OS/400 V3R7M0 or greater is required.

TDCompress User Guide

 - 10-84 -

Compressing on the AS/400
The COMPRESS program is invoked via a CALL CL statement. Options are specified as individually quoted
strings in the PARM field of the CALL statement. COMPRESS assumes default names for the input and
output files of DATAIN and DATAOT, respectively. Example:

CALL libname/COMPRESS PARM('ASCII' 'CRLF')

The default input and output file names may be overridden using the OVRDBF command. Example:

OVRDBF FILE(DATAIN) TOFILE(libname/filein)
OVRDBF FILE(DATAOT) TOFILE(libname/fileout)
CALL libname/COMPRESS PARM('ASCII' 'CRLF')

An alternate method for providing input and output file names is to include them as the first two
parameters in the PARM list:

CALL libname/COMPRESS PARM('lib/filein' 'lib/fileout' 'ASCII' 'CRLF')

If the output file does not exist, COMPRESS creates it using system default values for record length and file
size. If the output file does exist, then any data is overwritten unless the APPEND option is used.

See “Compress Options” on page 3-21 for specific options available for the AS/400.

TDCompress User Guide

 - 10-85 -

Decompressing on the AS/400
The DECOMP program is invoked via a CALL CL statement. Options are specified as individually quoted

strings in the PARM field of the CALL statement.
DECOMP assumes default names for the input and output files of DATAIN and DATAOT, respectively.
Example:

CALL libname/DECOMP PARM('QUIET')

The default input and output file names may be overridden using the OVRDBF command. Example:

OVRDBF FILE(DATAIN) TOFILE(libname/filein)
OVRDBF FILE(DATAOT) TOFILE(libname/fileout)
CALL libname/DECOMP PARM('QUIET')

An alternate method for providing input and output file names is to include them as the first two
parameters in the PARM list:

CALL libname/DECOMP PARM('lib/filein' 'lib/fileout' 'QUIET')

If the output file does not exist, DECOMP creates it using system default values for record length and file
size. If the output file does exist, then any data is overwritten unless the APPEND option is used.

See “Error! Reference source not found.” Error! Bookmark not defined. for specific options available
for the AS/400.

TDCompress User Guide

 - 10-86 -

Using GENKEYS on OS/400

1. Make the TDCompress library the current library:

• CHGCURLIB CPLIB

2. Type CALL GENKEYS to create the RSA encryption keys.

• GENKEYS prompts for random input data.

3. Type several lines of random characters to ensure the keys are hard to break.

4. Press the Enter key on a blank line to complete the random entry.

• GENKEYS writes the PRIVKEY and CERTREQ files in the TDCompress library.

The PRIVKEY file created by GENKEYS is a permanent key file and must be retained. The CERTREQ file

contains the portion of the key that must be certified by the TDManager. The TDManager Administrator
issues the security run-time files required to transmit secure data. See “Installing the TDManager Run-
time Files” on page 10-83 for a description of using GENKEYS.

The GENKEYS utility reads the EASYACC configuration file from TDManager and creates two output files
— CERTREQ and PRIVKEY. Sample GENKEYS JCL is distributed in the SAMPLIB PDS. Instructions for
running the job and creating your keys are included in the sample JCL.

The PRIVKEY file created by GENKEYS is a permanent key file and must be retained. The CERTREQ file

contains the portion of the key that must be certified by the TDManager. The TDManager Administrator
issues the security run-time files required to transmit secure data. See “Installing the TDManager Run-
time Files” on page 10-83 for a description of the run-time files and details on how to install them.

TDCompress User Guide

 - 10-87 -

Input to GENKEYS

The INIFILE DD points to the TDAccess configuration file created by TDManager. This file specifies the

user’s X.500 distinguished name as well as the modulus size and expiration interval to use when
generating the RSA keys. The SYSIN DD provides an optional control statement that specifies the name
of the passphrase location file. This file is where the IMPORT job stores the random passphrase used to

encrypt the private key (see “Installing the TDManager Run-time Files” on page 6-44). Its use, although
optional, is intended to provide an additional point of security for the private key. If no passphrase location
is provided, then the passphrase is stored with the private key. The format of the PASSLOC statement is:

PASSLOC=platform.specific.filename

Any other input specified via the SYSIN DD is hashed and used to seed GENKEYS’ pseudo-random
number generator. It is recommended that some unpredictable data be provided each time that GENKEYS

is run.

Output from GENKEYS

The private key generated by GENKEYS is written to the PRIVARCH DD. The private key is appended to
any previously generated private keys. It is important that the PRIVARCH file be retained for at least as
long as the RSA keypair expiration interval. The PRIVARCH file is used later by the IMPORT job to install

the security run-time files from the TDManager (See “Installing the TDManager Run-time Files” on page
6-44).

The public key generated by GENKEYS is written to the CERTREQ DD. The public key is stored as a PEM-

formatted certificate request and must be certified by the TDManager before it can be used. Typically, the
CERT.REQ file is sent (perhaps via email or FTP) to the TDManager where it is imported and certified.

The certificate is returned as part of the security run-time files that are created by TDManager and
imported by the IMPORT job. (See “Installing the TDManager Run-time Files” on page 6-44.) Although
GENKEYS appends the public key to any previously generated keys, there is no need to retain the
CERTREQ file once the TDManager has imported and certified the request.

Informational and error messages from GENKEYS are written to the SYSPRINT DD.

TDCompress User Guide

 - 10-88 -

Modifying the Default Translation Tables
TDCompress contains a default EBCDIC-to-ASCII translation table. The user can modify the table at run
time if the default translation is not appropriate.

All translation between the EBCDIC and ASCII character sets is performed on the EBCDIC host (for
example, MVS or AS/400). Translation from EBCDIC to ASCII occurs during compression when the
ASCII execution parameter is specified. Translation from ASCII to EBCDIC occurs during decompression
if the ASCII parameter was supplied when the data was compressed.

The default table is replaced by providing a file with the desired EBCDIC-to-ASCII translation. The name
of the file is specified via the TRANTBL= parameter. The file must contain 256 pairs of characters. Each
pair of characters represent one hexadecimal ASCII byte. The position of each pair is the EBCDIC value
to translate and the value of each pair is the ASCII value to translate to. For example, the first pair of
characters gives the ASCII translation for the EBCDIC value x'00', the second pair gives the ASCII
translation for the EBCDIC value x'01' and so on. The last pair gives the ASCII translation for the EBCDIC
value x'FF'. Blanks or commas can be used to separate the pairs for readability.

Below is the TDCompress default EBCDIC-to-ASCII translation table as it would be entered in a
TRANTBL file:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
80 81 82 83 84 8E 87 8F 88 89 8A 8B 8C 8D 86 7F
90 91 97 93 94 95 96 9C 98 99 9A 9B 9D 85 9E 92
20 A0 A1 A2 A3 A4 A5 A6 A7 A8 D5 2E 3C 28 2B 7C
26 A9 AA AB AC AD AE AF B0 B1 21 24 2A 29 3B 5E
2D 2F B2 B3 B4 B5 B6 B7 B8 B9 E5 2C 25 5F 3E 3F
BA BB BC BD BE BF C0 C1 C2 60 3A 23 40 27 3D 22
C3 61 62 63 64 65 66 67 68 69 C4 C5 C6 C7 C8 C9
CA 6A 6B 6C 6D 6E 6F 70 71 72 CB CC CD CE CF D0
D1 7E 73 74 75 76 77 78 79 7A D2 D3 D4 5B D6 D7
D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 5D E6 E7
7B 41 42 43 44 45 46 47 48 49 E8 E9 EA EB EC ED
7D 4A 4B 4C 4D 4E 4F 50 51 52 EE EF F0 F1 F2 F3
5C 9F 53 54 55 56 57 58 59 5A F4 F5 F6 F7 F8 F9
30 31 32 33 34 35 36 37 38 39 FA FB FC FD FE FF

TDCompress User Guide

 - 10-89 -

Appendix A

Using API (Extended Security Option)
Application programmers can call the TDCompress utilities to compress, decompress, and secure data
within their applications. A platform-specific static library, DLL, or shared object is provided that contains
the TDCompress utilities as function calls. The libraries contain separate functions for compressing and
securing data, and for decompressing and unsecuring data. All the features of the standalone utilities are
available via the CALL interface.

Data is compressed and secured by calling either the compress function or the compprog function. Data
is decompressed and unsecured by calling either the decomp function or the dcmpprog function. The
functions differ in the specific interface between them and the caller and in how input and output is
handled.

The compress and decomp functions expect to receive a parameter list like the parameter list built by the
operating system when using the standalone utilities. The parameter list contains the input and output file
names and any keyword options required. The called compress and decomp routines operate like the
standalone utilities, reading and writing files, and performing the requested compression and security.
The compress and decomp entry points are referred to as the command-line API because they operate
as if they had been executed from the command line.

The compprog and dcmpprog functions require the calling program to set up a parameter block used to
specify options and pass status information between the caller and the functions. The calling program is
responsible for all input and output operations; compprog and dcmpprog do not perform file handling.
Instead, the calling program passes and receives data from the functions in memory buffers. The
compprog and dcmpprog entry points are referred to as the interactive API because they interact with the
calling program to process data.

Using the Command-Line API (COMPRESS and
DECOMP)
When a C program is executed from the command line, the operating system passes two parameters to
the program’s main function. The first parameter is an integer that is the number of values entered on the
command line. The second parameter is the address of an array of pointers to the values entered on the
command line. The first value pointed to in the array is the name of the executed program itself, so there
is always at least one value present. For example, to compress and secure a file named filein to the
output file fileout, the command line might look like this:

compress filein fileout ascii crlf secure

TDCompress User Guide

 - 10-90 -

When the compress program executes, it receives two parameters from the operating system — an
integer, traditionally given the variable name argc, and the address of an array of pointers, traditionally
given the variable name argv[]. For the example above, argc has a value of 6 and argv[] contains six
pointers — a pointer to each value entered on the command line.

Calling programs can emulate the operating system by building the argv[] array and then calling
compress or decomp with the argc and argv[] parameters. For a program to emulate the operating system
using the command-line example above, it needs to allocate and initialize the six values as string
variables. The argv array must be initialized to contain six pointers to the string variables. The program
calls compress passing two parameters — the integer 6 and the address of the argv array. The following
code fragment demonstrates this:

#include "commprss.h"
int CallCompress()
 { // declare and initialize local variables
 //
 int status;
 char *newArgv[6] = {
 "compress",
 "filein",
 "fileout",
 "ascii",
 "crlf",
 "secure"
 };

 // call compression routine and return completion code
 //
 status = compress(6, newArgv);
 return status;
 }

Using the Interactive API (compprog and dcmpprog)
A program that handles its own files, or that processes data that is not file oriented, calls the compprog
and dcmpprog functions to add or remove compression and security. The caller sets up a parameter
block that specifies the desired compression and decompression options. Most of the options correspond
to one of the TDCompress command-line options, for example, EDI, SECURE, etc. Data is passed to and
from the TDCompress functions in memory buffers. Next, a conversation takes place between the calling
program and the TDCompress functions, with the calling program providing additional input when
requested, and TDCompress giving output as needed until all data is processed.

TDCompress User Guide

 - 10-91 -

The name of the parameter block structure is CALLPBLK. It is defined in the parmblk.h header file and is
not reprinted here. Other definitions, including the TDCompress function prototypes and calling
conventions are in the commprss.h and cpapi.h header files. Because sample programs are distributed
with the TDCompress software to demonstrate the compprog and dcmpprog functions, only a brief
overview is given below.

The Interactive API Conversation
The calling program must initialize the parameter block to NULLs and then put the size of (CALLPBLK) in
the first field of the block. This indicates the version of CALLPBLK to the TDCompress functions.

The caller must allocate input and output buffers and set the maximum length of the output buffer in the
outbufLength field in CALLPBLK. The maximum buffer size is 4,294,967,295 bytes (4G -1). When
securing X12 or EDIFACT EDI data, the output buffer must be large enough to hold an entire, secured
EDI envelope (for example, from the ISA through the IEA segments of X12 data and from the UNA/UNB
through the UNZ segments of EDIFACT data).

Desired options are requested by setting the various option flags to 1. All TDCompress command-line
options are available with the exception of specific file and directory handling options. Certain text
options, such as the path where the security run-time files are located, must be placed in the appropriate
CALLPBLK string fields.

To begin a conversation, the caller fills the first input buffer and sets its length in the inpbufLength field in
CALLPBLK. The caller then invokes compprog or dcmpprog passing the addresses of the buffers and the
address of the parameter block as parameters. Upon return, the caller must check the rc, inrq and otrq
fields in CALLPBLK.

If rc is non-zero, then an error occurred and corrective action is needed. Use the value in the rc field to
look up the error in “COMPRESS and DECOMP Error Messages and Codes” on page 10-95.

If inrq is non-zero, then compprog or dcmpprog is making an input request for a new input buffer. The
caller must fill the input buffer and set its length in the inpbufLength field in CALLPBLK. Next, the caller
must re-invoke compprog or dcmpprog.

When calling compprog on a record-based operating system, such as MVS and OS/400, if the CRLF
option is specified, then the caller must supply input records one at a time. This allows compprog to
correctly delimit multiple records.

If otrq is non-zero, then compprog or dcmpprog has filled the output buffer, and is making an output
request. The actual length of the output buffer filled by the TDCompress function is set in the
usedOutbufLength field in CALLPBLK. The caller must dispose of the filled output buffer and re-invoke
compprog or dcmpprog.

TDCompress User Guide

 - 10-92 -

When calling dcmpprog on a record-based operating system, such as MVS and OS/400, if the data is
compressed with the CRLF option then output records are returned one at a time. This allows the caller
to distinguish between multiple records.

This conversation between the calling program and the TDCompress function continues until either the
caller wishes to stop compressing/securing input, or until input has been completely
decompressed/unsecured.

Ending the Conversation
The beginning of the end of a conversation with the compprog function happens when the caller sets the
eod field in CALLPBLK to a non-zero value. The caller sets eod in response to an input request from
compprog. This is the beginning of the end of the conversation because compprog will more than likely
need to return at least one output buffer. The conversation is actually ended when compprog returns with
both the inrq field and the otrq field set to zero. The caller can begin a new conversation by once again
filling the input buffer, setting its length in the inpbufLength field and invoking compprog.

When calling dcmpprog, the caller is not responsible for ending the conversation. Under normal
circumstances, dcmpprog detects the end of compressed data automatically and, after returning the last
output buffer, returns with both the inrq field and the otrq field set to zero. The inpbufLength field is set
to the length of the unprocessed data remaining in the last input buffer.

TDCompress User Guide

 - 10-93 -

Appendix B

Technical Notes
Conversion between the ASCII and EBCDIC formats is always performed on the EBCDIC machine (for
example, the mainframe or AS/400). If the ASCII option is specified during compression on the
mainframe or AS/400, then the records are translated to ASCII format prior to being compressed. Data
compressed on a PC with the ASCII option is translated to EBCDI format during decompression on the

mainframe or AS/400.

The CRLF option of TDCompress causes a x'1E' to be used as a record separator byte. When

compressing data on the mainframe or AS/400, the record separator is added at the end of each input
record before it is compressed. When compressing data on the PC, the record separator byte replaces
the carriage return/line feed pair that delimits each record. When the DECOMP program on the mainframe

or AS/400 encounters a record separator, it removes the x'1E' and writes a decompressed record to the
output file. Fixed length output records are padded with blanks, if necessary. The DECOMP program on the
PC replaces the record separators with carriage return/line feed pairs to delimit the decompressed output
records. The CRLF option must be specified when variable length records are compressed if the

decompressed records are to retain their original record lengths.

Compressed files contain a signature in the first 16 bytes of the first compressed record. The format of the
signature follows:

Byte Pos Value ASCII value and description

1-2 x'EEED' constant

3-10 c'COMPRESS' constant

11 x'40' TDCompress version number

12 flag byte (first 4 bits complete the TDCompress version number)

 b'00000001' x'01' directory info is embedded

 b'00000010' x'02' ASCII specified during compression

 b'00000100' x'04' CRLF specified during compression

TDCompress User Guide

 - 10-94 -

13 b'00000011' x'03' compressed data encrypted with DES

 b'00000101' x'05' compressed data encrypted with RC2

 b'00000111' x'07' compressed data encrypted with triple DES

 b'00010000' x'10' 21st century bit

14-16 reserved

If directory information is embedded in the compressed data it begins in position 17 as follows:

Length Format Description

 4 HHMM time from directory entry of PC file

 6 YYMMDD date from directory entry of PC file

 1 binary length of filename

 var character filename

The compressed data immediately follows the signature, which is composed of variable length blocks.
Each block is preceded by a three byte block length in packed decimal format. The last two bytes of each
block is a 16-bit CRC used to verify data integrity.

TDCompress User Guide

 - 10-95 -

Appendix C

Error Messages and Codes
The TDCompress programs write informational and error messages to report on their activity. The
messages are usually written to the console (or the STDOUT file) as well as the log files. Each message

has an associated error code, which is printed at the start of the message.

The programs return with the highest error code encountered during processing. The error code can be
tested using facilities provided by the operating system, such as the DOS ERRORLEVEL mechanism,
UNIX shell programming functions, or MVS condition code testing. User programs calling the
TDCompress application programming interface must check the RC field in the parameter block after
each call to determine if an error occurred.

COMPRESS and DECOMP Error Messages and Codes
RC=1 Error allocating memory.

 A failure occurred allocating memory for work areas.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=9 File xxxxxxxx is not a compressed file.

The specified input file does not contain any compressed data and the
UNCOMP parameter was not specified.

For MVS or AS/400 platforms, this message will only be produced if you
specify the NOUNCOMP parameter.

ACTION: This is an informational message. It is issued as a precaution
to the user that an input file was not recognized by DECOMP as a compressed
file. On ASCII platforms, use the UNCOMP parameter to suppress this message.

TDCompress User Guide

 - 10-96 -

RC=10 File xxxxxxxx is not an EDI file.

The specified input file does not contain EDI data.

ACTION: This is an informational message. It is issued as a precaution
to the user that an input file was not recognized by COMPRESS or DECOMP as an

EDI file.

RC=14 Compressed data ended prematurely for input file.

 A new compressed segment started, or end-of-file was reached, before the current
segment was complete. Processing continues with the next compressed file.

 ACTION: The compressed data has been altered, or corrupted, and cannot be accurately
decompressed.

RC=15 CRC failure (reason code=15) for input file.

 DECOMP detected a failure during cyclic redundancy checking. Processing continues with
the next compressed file.

 The compressed data has been altered, or corrupted, and cannot be accurately
decompressed. DECOMP bypasses the corrupted file and continues decompressing with
the next compressed file.

RC=16 Invalid signature.

 ACTION: Contact bTrade.com at 800-425-0444 for further information

RC=17 Unable to decompress data due to restricted license violation.

 The user has a restricted license for TDCompress software and can only use it with
specific trading partners. Compressed data can only be exchanged and decompressed
with those partners.

 ACTION: Contact bTrade.com at 800-425-0444 for information on obtaining a full,
unrestricted license.

RC=18 Invalid EDI envelope.

 The EDI data being compressed or decompressed contains an incomplete envelope.
This error can also occur when an invalid segment terminator is encountered.

 ACTION: If compressing, do not use carriage return, line feed or new line characters as
the segment terminator. Correct the EDI envelope and rerun COMPRESS. If

decompressing, then the file has most likely been corrupted. Processing continues with
the next envelope.

TDCompress User Guide

 - 10-97 -

RC=20 Error opening input file.

 An error occurred when the specified input file was being opened.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=21 Error reading input file.

 An error occurred when the specified input file was being read.

 ACTION: Examine the accompanying
system message to determine the cause of the error. Correct the problem and rerun
COMPRESS or DECOMP.

RC=24 Error positioning input file.

 An error occurred when the input file was being positioned for
decompression.

 ACTION: Examine the accompanying system message to determine the
cause of the error. Correct the problem and rerun DECOMP.

RC=30 Error opening output file.

 An error occurred when the specified output file was being opened.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=31 Error reading output file.

 An error occurred when the specified file was being read.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS.

RC=32 Error writing output file.

 An error occurred when the specified output file was being written.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

TDCompress User Guide

 - 10-98 -

RC=33 Error closing output file.

 An error occurred when the specified output file was being closed.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=34 Error positioning output file.

 An error occurred when the output file was being positioned for compression.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS.

RC=35 Error retrieving info for file.

 An error occurred while retrieving the MVS DCB parameters for the specified file.

 ACTION: Examine the accompanying system
message to determine the cause of the error. Correct the problem and rerun COMPRESS or DECOMP.

RC=36 Disk is full when log file is created. No permissions exist when trying to write to the log
file. File is in use by other user.

 ACTION: Determine which problem exists and correct it.

RC=37 PDS output not allowed with EDI or APPEND parms

 DATAOT must be a sequential file when using the EDI or APPEND options.

 ACTION: Change the DATAOT DD to use a sequential dataset and rerun COMPRESS or
DECOMP.

RC=38 SYSUT1 and DATAXX files cannot be PDS.

 SYSUT1 and DATAXX must be sequential files.

 ACTION: Change the SYSUT1 and/or DATAXX DD to use a sequential dataset and rerun
DECOMP.

RC=50 Error opening encrypt.key file.

 An error occurred opening the file that contains the encryption/decryption key.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

TDCompress User Guide

 - 10-99 -

RC=51 Error reading encrypt.key file.

 An error occurred reading the file that contains the encryption/decryption key.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=52 Proprietary encryption not supported in this version.

Either the ENCRYPT parameter was specified as a COMPRESS or DECOMP parm
or the file being processed by DECOMP was encrypted using the ENCRYPT parameter
from an older version of the product.

ACTION: Use RC2, DES, or DE3 to encrypt the file.

RC=54 Error decrypting file (invalid pad character).

 The specified file did not decrypt successfully during DECOMP processing.

 ACTION: A corrupted compressed file most likely causes this. The file cannot be
accurately decompressed. DECOMP bypasses the file and continues decompressing with

the next compressed file.

RC=55 Error decrypting file.

 The specified file did not decrypt successfully during DECOMP processing.

 ACTION: An incorrect decryption key most likely causes this. The same key used to
encrypt the data during compression must be used to decrypt the data during
decompression. Provide the correct key in the encrypt.key file and rerun DECOMP.

RC=56 This message should not occur, since bTrade.com only builds for triple TRIPLE DES

encryption.

 ACTION: Should this message occur, contact bTrade.com and return the software.

TDCompress User Guide

 - 10-100 -

RC=57 This message should not occur, since bTrade.com only builds for triple TRIPLE DES

encryption.

 ACTION: Should this message occur, contact bTrade.com and return the software.

RC=58 Encryption hardware error.

 An error was returned when attempting to access the hardware encryption device.

RC=60 Error opening work/reject file.

 An error occurred when the specified file was being opened.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=61 Error reading work/reject file.

 An error occurred when the specified file was being read.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=62 Error writing work/reject file.

 An error occurred when the specified file was being written.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=63 Error closing work/reject file.

 An error occurred when the specified file was being closed.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=65 Unable to create work file.

 DECOMP cannot generate a unique name for the work file.

 ACTION: Delete the temporary files (names beginning with'~WK') and rerun DECOMP.

TDCompress User Guide

 - 10-101 -

RC=66 Error deleting work file.

 An error occurred when the specifi ed file was being deleted.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=70 No input files found.

 No input files were found to compress/decompress.

 ACTION: This may be a normal condition. However, the command-line parameters may
specify an incorrect input path/file name. If this is the case, then correct the command-
line parameters and rerun COMPRESS or DECOMP.

RC=71 xxxx is an invalid parameter.

 The listed command line argument is not recognized as a valid parameter by COMPRESS
or DECOMP.

 ACTION: Refer to the command-line parameters for this option description’s correct
syntax. Correct the command line and rerun COMPRESS or DECOMP.

RC=72 String error processing command line arguments.

 An internal error occurred while parsing the command line.

 ACTION: Contact bTrade.com at 800-425-0444 for help in resolving this problem.

RC=73 Invalid output path.

 The format of the output path specified in the command line is invalid.

 ACTION: Correct the command-line parameters and rerun COMPRESS or DECOMP.

TDCompress User Guide

 - 10-102 -

RC=74 Cannot decompress files into themselves.

 The command-line parameters specify that the output files are to retain the names of the
input files, but the target directory for the output files is the same directory where the
input files reside.

 ACTION: Either specify a target directory that is different than the directory that contains
the input files, or supply a file name for the output files. Refer to “Compressing on the PC
(DOS, OS/2 and Windows)” on page 8-65 and “Decompressing on the PC (DOS, OS/2
and Windows)” on page 8-66 for details.

RC=75 Error generating automatic extension.

 COMPRESS or DECOMP cannot generate an automatic extension for the output file. Files

already exist for all possible extensions.

 ACTION: Delete or rename some of the output files and rerun COMPRESS or DECOMP.

RC=76 Invalid file name in SELECT.

 The SELECT parameter, which cannot be parsed, contains an invalid file name.

 ACTION: Re-enter the command with a corrected SELECT parameter.

RC=77 Invalid file sequence in SELECT.

 The SELECT parameter contains an invalid file sequence. The SELECT cannot be parsed.

 ACTION: Re-enter the command with a corrected SELECT parameter.

RC=78 Error creating output directory.

 An error occurred when the specified output directory was being created.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun DECOMP.

RC=79 Error processing TRANTBL.

 An error occurred when opening or reading the specified translate table file.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

TDCompress User Guide

 - 10-103 -

RC=80 Error opening parameter file.

 An error occurred when opening the parameter file.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS.

RC=81 Error reading parameter file.

 An error occurred when reading the parameter file.

 ACTION: Examine the accompanying system message to determine the cause of the
error. Correct the problem and rerun COMPRESS or DECOMP.

RC=83 Error processing SYSIN parms.

 An error occurred when processing the SYSIN dataset.

 ACTION: Examine the secondary error message to determine the cause of the error.
Correct the problem and rerun DECOMP.

RC=84 Dynamic allocation error.

 An error occurred during dynamic allocation of the output dataset.

 ACTION: Use the error codes in the message and reference the MVS documentation to
determine the cause of the error. Correct the problem and rerun DECOMP.

RC=89 Invalid Comm-Press version.

RC=90 Invalid Comm-Press version.

 The data was compressed with a version of Comm-Press that is either no longer
supported, or that is later than that used to decompress.

 ACTION: If the Comm-Press version is no longer supported, then the sender must
upgrade to the current version. Otherwise, you must upgrade to the latest version.
Contact bTrade.com at 800-425-0444 to acquire the latest version.

RC=91-98 CRC failure (reason code=91-98) for input file.

 DECOMP detected a failure during cyclic redundancy checking. Processing continues with

the next compressed file.

 ACTION: The compressed data has been altered, or corrupted, and cannot be accurately
decompressed. DECOMP bypasses the corrupted file and continues decompressing with

the next compressed file.

TDCompress User Guide

 - 10-104 -

RC=100 Too many subdirectory levels (maximum=100).

 You are trying to recursively process nested subdirectories but the maximum of 100
nested levels has been reached.

 ACTION: The operation cannot be performed. You must rearrange your subdirectories
before compression so that no more than 100 levels exist.

RC=101 Error initializing certificate file.

 An error occurred when COMPRESS tried to initialize the certificate

run-time file.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message, to determine the reason for the init error. Correct the error and
rerun COMPRESS.

RC=102 Error initializing private key file.

 An error occurred when COMPRESS tried to initialize the private key

run-time file.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message, to determine the reason for the init error. Correct the error and
rerun COMPRESS.

RC=103 Error processing SECFILE.

 An I/O or other error occurred when COMPRESS was processing SECFILE.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by COMPRESS, to determine the reason for the error.
Correct the error and rerun COMPRESS.

RC=104 Error processing CPLOOKUP.TBL.

 An I/O or other error occurred when COMPRESS was processing CPLOOKUP.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by COMPRESS, to determine the reason for the error.
Correct the error and rerun COMPRESS.

TDCompress User Guide

 - 10-105 -

RC=105 Error processing random object.

 A severe error occurred when COMPRESS or DECOMP was processing the random number
object.

 ACTION: Examine the secondary error message issued by COMPRESS to determine the

reason for the error. The BSAFE return code is especially important in determining the
cause of the error. “BSAFE Return Codes ” appear on page 10-112. Contact bTrade.com
for help in resolving the error.

RC=106 Error building SxS segment.

 A severe error occurred when COMPRESS was building the SxS segment used to hold

bulk encryption information.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by COMPRESS to determine the reason for the error. The

BSAFE return code is especially important in determining the cause of the error. “BSAFE
Return Codes” appear on page 10-112. The most common reason for this error is the
absence of a valid certificate for the RECEIVER. Correct the error and rerun COMPRESS.

RC=107 Error building signature segments (SxA/SVA) .

 A severe error occurred when COMPRESS was building the SxA/SVA segments used to
hold digital signature information.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by COMPRESS to determine the reason for the error. The
BSAFE return code is especially important in determining the cause of the error. “BSAFE
Return Codes” on page 10-112. The most common reason for this error is the absence of
a valid certificate or private key for the SENDER, or a missing or invalid passphrase file.
Correct the error and rerun COMPRESS.

RC=108 Error processing SxS segment.

 A severe error occurred when DECOMP was processing the SxS segment used to hold
bulk encryption information.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by DECOMP, to determine the reason for the error. The
BSAFE return code is especially important in determining the cause of the error. “BSAFE
Return Codes” appear on page 10-112. The most common reason for this error is the
absence of a valid certificate or private key for the RECEIVER, or a missing or invalid
passphrase file. Correct the error and rerun DECOMP.

TDCompress User Guide

 - 10-106 -

RC=109 Error processing signature segment (SxA/SVA) .

 A severe error occurred when DECOMP was processing the SxA/SVA segments used to
hold digital signature information.

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message issued by DECOMP, to determine the reason for the error. The
BSAFE return code is especially important in determining the cause of the error. “BSAFE
Return Codes” appear on page 10-112. The most common reason for this error is the
absence of a valid certificate for the SENDER, or the data has been corrupted or tampered
with. Correct the error and rerun DECOMP.

RC=110 Error initializing symmetric key file.

 An error occurred when COMPRESS tried to initialize the symmetric key run-time file

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message, to determine the reason for the init error. Correct the error and
rerun COMPRESS.

RC=111 Error verifying message authentication code (SxE).

 The computed message authentication code did not match what was sent on the SxE
segment.

 ACTION: The decompressed data has failed authentication processing. This may be due
to a corrupted file or tampering. DECOMP bypasses the file and continues decompressing

with the next compressed file.

RC=112 Unsecured group (GS/GE) in input.

 The EDI data contains an unencrypted group.

 ACTION: The SECURECK option was specified to prevent unencrypted EDI data from
being written to DATAOT. The EDI envelope containing the unencrypted group has been
written to the reject file DATAXX.

RC=113 Unsecured transaction (ST/SE) in input.

 The EDI data contains an unencrypted transaction.

 ACTION: The SECURECK option was specified to prevent unencrypted EDI data from
being written to DATAOT. The EDI envelope containing the unencrypted transaction has
been written to the reject file DATAXX.

TDCompress User Guide

 - 10-107 -

RC=114 Error initializing participant file.

 An error occurred when COMPRESS tried to initialize the participant table run-time file

 ACTION: Examine the accompanying operating system messages, as well as the
secondary error message, to determine the reason for the init error. Correct the error and
rerun COMPRESS.

RC=115 No relationship found in lookup table.

 The SECUREONLY option was specified, but a security relationship record was not found

in the lookup run-time file.

 ACTION: Examine the secondary error message to determine the participants for which
no relationship exists. A security relationship must be defined in TDManager and new
runtime files must then be installed, to secure the data.

RC=116 Caused by permissions, DB2 not starting or invalid subsystem name.

 ACTION: Look up the specified DB2 return code for the correct action.

RC=117 Mixing EDIFACT message types not allowed.

 ACTION: Refer to EDIFACT Standards.

RC=118 Error building AUTACK message. Caused by an environmental error, inadequate
permissions, insufficient storage, public key error, or run-time files are not current.

 ACTION: A secondary message will help identify the source of the problem.

RC=119 Error building AUTACK message. Caused by an environmental error, inadequate
permissions, insufficient storage, public key error, or run-time files are not current.

 ACTION: A secondary message will help identify the source of the problem.

TDCompress User Guide

 - 10-108 -

Secondary Messages/Return Codes
The following secondary messages and return codes may appear along with one of the previous
messages.

RC=1 Error allocating memory

RC=2 Record not found

RC=3 Initialization error

RC=4 Seed error

RC=5 Message digest does not match SVA

RC=6 Error encrypting digest

RC=7 Signature does not verify

RC=8 Error making random initialization vector

RC=9 Error making random encryption key

RC=10 Error encrypting random encryption key

RC=11 Error decrypting random encryption key

RC=12 Error getting public key

RC=13 Error getting private key

RC=14 No valid certificate found

RC=15 Unsupported compression algorithm

RC=16 Unsupported encryption algorithm

RC=17 Unsupported assurance algorithm

RC=18 Unsupported filter algorithm

RC=19 Error getting secret authentication key

RC=20 Error getting secret encryption key

RC=21 Error retrieving onetime key

RC=22 Encryption hardware error

TDCompress User Guide

 - 10-109 -

RC=23 Missing AUTACK message

RC=24 Invalid AUTACK message

RC=60 Error opening file

RC=61 Error reading file

RC=62 Error writing file

RC=70 Incomplete segment

AUTACK Error Codes
The following error codes can be returned when an error is encountered processing an AUTACK
message in an EDIFACT interchange:

RC=1000 Error allocating memory

RC=1001 Invalid AUTACK version number

RC=1002 Invalid AUTACK release number

RC=1004 Invalid AUTACK format

RC=1005 NVB digest does not verify

RC=1006 Invalid NVB signature block

RC=1007 Invalid NVB contract number

RC=1008 Invalid NVB EB authorization number

RC=1009 Invalid NVB signature date

RC=1010 Invalid NVB signature time

TDCompress User Guide

 - 10-110 -

AUTACK Version 1.1 Error Codes

The following error codes are specific to a version 1.1 AUTACK message:

RC=1100 Invalid segment

RC=1101 Invalid version number

RC=1102 Invalid release number

RC=1103 Invalid security reference value

RC=1104 Invalid reference value

RC=1105 Invalid signature 1

RC=1106 Invalid signature 2

RC=1107 Invalid interchange value

RC=1108 Missing UNH segment

RC=1109 Missing USH segment

RC=1110 Missing USR segment

RC=1113 Invalid UNH segment

RC=1114 Invalid USH segment

RC=1115 Invalid USR segment

AUTACK Version 4.1 Error Codes

The following error codes are specific to a version 4.1 AUTACK message:

RC=4100 Invalid segment

RC=4101 Invalid version number

RC=4102 Invalid release number

RC=4103 Invalid security reference value

RC=4104 Invalid reference value

TDCompress User Guide

 - 10-111 -

RC=4105 Invalid signature 1

RC=4106 Invalid signature 2

RC=4107 Invalid interchange value

RC=4108 Missing UNH segment

RC=4109 Missing USH segment

RC=4111 Missing USC segment

RC=4112 Missing USY segment

RC=4113 Invalid UNH segment

RC=4114 Invalid USH segment

RC=4116 Invalid USC segment

RC=4117 Invalid USY segment

TDCompress User Guide

 - 10-112 -

Additional API Error Codes
The following additional error codes can be returned in the RC field by the API:

Error Code Description

13 Input buffer too short (DCMPPROG)

11 Output buffer too short (COMPPROG)

16 Invalid compression signature (DCMPPROG)

BSAFE Return Codes
BSAFE return codes are issued by the RSA public/private key functions. Most of the return codes
experienced should be explained in the message that accompanies them. However, if they aren’t, then
they are described below. If you receive a BSAFE return code that is not explained by the error message
and does not appear in the following list, contact bTrade.com for help in resolving the problem.

Return Code Description

256 Insufficient memory

257 Invalid signature on certificate or CRL

258 Invalid attributes object

259 Invalid number of values for the attribute type

260 Requested attribute type is not in the attributes object

261 Invalid attribute value tag

262 Unknown attribute type

263 Invalid attribute value

264 Invalid attribute value length

265 Invalid format for BER coding

266 Operation was canceled by the surrender function

TDCompress User Guide

 - 10-113 -

267 Certificate chain could not be constructed

268 Invalid certificate encoding

269 Invalid certificate object

270 Invalid co set

271 Invalid CRL coding

272 Invalid CRL object

273 Generic data error

274 Fatal database interface error

275 Unsupported DEK (data encryption) algorithm

276 Unknown DEK (data encryption) algorithm

277 Invalid digest object

278 Fatal I/O interface error in enhanced text stream

279 End of stream

280 Even exponent not permitted in public or private key

281 Invalid exponent length in public or private key

282 Cryptographic hardware error

283 Syntax error in PEM header fields

284 Index out of range

285 Invalid length for input data

286 Fatal I/O interface error in input stream

287 Fatal I/O interface error

288 Invalid list object

289 Invalid internal memory object

290 Invalid signature on message

291 Invalid me set

TDCompress User Guide

 - 10-114 -

292 Unsupported MIC (message digest) algorithm

293 Unknown MIC (message digest) algorithm

294 Invalid modulus length in public or private key

295 Invalid name object

296 Random object not seeded

297 Certificate, private key, or CRL not found

298 Recipient of incoming message not among potential recipients

299 Unsupported operation requested

300 Invalid length for output data

301 Fatal I/O interface error in output stream

302 Data block exceeds 32,767 bytes

303 Invalid parameter

304 Invalid password for decrypting data

305 Unsupported password-based encryption algorithm

306 Unknown password-based encryption algorithm

307 Fatal I/O interface error in PKCS input stream

308 Fatal I/O interface error in PKCS output stream

309 Fatal I/O interface error in PKCS stream

310 Invalid private key format

311 Invalid message process type

312 Invalid encoding of protected data

313 Invalid public key format

314 Invalid random object

315 Unsupported certificate or CRL signature algorithm

TDCompress User Guide

 - 10-115 -

316 Unknown certificate or CRL signature algorithm

317 Invalid syntax for base 64 encoding

318 Fatal I/O interface error in text stream

319 Argument expected to be a #define’d constant invalid

320 Invalid certificate validity

321 Invalid message version

322 Invalid you set

512 Value of the algorithm object has already been set by a call to
B_SetAlgorithmInfo or by an algorithm parameter generation

513 Invalid format for the algorithm information in the algorithm object

514 Algorithm object has not been initialized by a call to the Init procedure

515 Algorithm object has not been set by a call to B_SetAlgorithmInfo

516 Invalid algorithm object

517 Unknown operation for an algorithm or algorithm information type

518 Insufficient memory

519 Operation was canceled by the surrender function

520 Generic data error

521 Invalid even value for public exponent in keypair generation

522 Invalid exponent length for public exponent in keypair generation

523 Cryptographic hardware error

524 Invalid encoding format for input data

525 Invalid total length for input data

526 Value of the key object has already been set by a call to B_SetKeyInfo or
by a key generation

527 Invalid format for the key information in the key object

TDCompress User Guide

 - 10-116 -

528 Invalid key length

529 Key object has not been set by a call to B_SetKeyInfo or by a key
generation

530 Invalid format for the key information in the key object

531 Unknown operation for a key info type

532 Invalid internal memory object

533 Unsupported modulus length for a key or for algorithm parameters

534 Algorithm is improperly initialized

535 Algorithm chooser does not support the type of key information in the key
object for the specified algorithm

536 Maximum size or the output buffer is too small to receive the output

537 Data block exceeds 32,767 bytes

538 Random algorithm has not been initialized by a call to B_RandomInit

539 Invalid algorithm object for the random algorithm

540 Signature does not verify

541 Required algorithm information is not in the algorithm object

542 Required key information is not in the key object

543 Update called an invalid number of times for inputting data

544 Algorithm chooser doesn’t contain the algorithm method for the algorithm
 specified by the previous call to B_SetAlgorithmInfo update called an
 invalid number of times for outputting data

TDCompress User Guide

 - 10-117 -

Appendix D

Support CCA

Overview
This optional feature of TDCompress Enhanced provides support for Common Cryptographic
Architecture (CCA) hardware devices (examples are the IBM 4753 and the cryptographic co-
processor).

This technology allows off-loading of processor cycles to the cryptographic unit. The
implementation retains the ability to use TDCompress software when the hardware is not
available.

Key values are secured in the TDManager tables and are passed to the CCA interface at
execution time.

Prerequisites
CCA support is available in the MVS(OS390) environment.

Special requirements in addition to those specified for the Comm-Press basic package:

• CCA hardware device

• Started task driver for CCA device

• ICSF for OS/390 Version 2.8 and above

Operation
Specify use of hardware encryption devices by adding the ‘CCA’ option to the PARM clause on
the EXEC JCL statement. The ‘CCA’ option is valid for both the COMPRESS and DECOMP
programs. For Example:

//STEP010 EXEC PGM=COMPRESS,PARM=’SECURE,CCA’

TDCompress User Guide

 - 10-118 -

Glossary of Terms
algorithm A clearly specified mathematical process for computation; a set of rules

which gives a prescribed result.

alphanumeric A character set that contains both letters and digits.

ANSI American National Standards Institute; ANSI is a private,
non-profit organization responsible for the development and approval of
voluntary consensus standards in the United States. ANSI approves
standards developed primarily by trade, technical, professional,
consumer, and labor organizations. They approve standards only when
verified evidence is presented by a standards developer that those
affected by the standard have reached substantial agreement on its
provisions.

ASC X12 ANSI Accredited Standards Committee (ASC) X12 chartered to develop
uniform standards for electronic interchange of business transactions.

ASC X12.58 The ASC X12 subcommittee that defines standards for securing X12-
formatted EDI data. The standards address authentication, encryption,
and verification of the security originator to the security recipient.

ASCII American Standard Code for Information Interchange; A code for
representing characters as numbers, with each character assigned a
number from 0 to 127.

asymmetric algorithm An encryption algorithm that uses two mathematically related, but
different, key values to encrypt and decrypt data. One value is
designated as the private key and is kept secret by the owner. The other
value is designated as the public key and is shared with the owner’s
trading partners. The two keys are related such that when one key is
used to encrypt, the other key must be used to decrypt.

authentication The verification of the source, uniqueness, and integrity of a message.

certificate request An uncertified public key created by a trading partner as part of the RSA
keypair generation. The certificate request must be approved by a CA,
(be issued as a certificate) before it can be used to secure data.

TDCompress User Guide

 - 10-119 -

certificate A certified public key. Certificates are issued by a CA, which includes
adding the CA’s distinguished name, a serial number and starting and
ending validity dates to the original request. The CA then adds its digital
signature to complete the certificate.

Certifying Authority Entity responsible for issuing certificates. Before issuing a certificate, the
CA follows published policies to verify the identity of the trading partner
that submitted the certificate request. Once issued, other trading partners
can trust the certificate based upon the trust placed in the CA and its
published verification policy. TDManager is the CA product used with
TDCompress.

ciphertext Encrypted data.

CRLF carriage return/line feed

delimiter A field separator (for example, comma, tab, or ot her defined character)

decryption The process of transforming ciphertext into plaintext.

DES Digital Encryption Standard; A U.S.government standard encryption
algorithm that has been endorsed by the U.S. military for encrypting
“unclassified but sensitive” information. It is a symmetric algorithm; the
same key is used for encryption and decryption.

digital signature Electronic signature that can be applied to any electronic document. An
asymmetric encryption algorithm, such as the RSA algorithm, is required
to produce a digital signature. The signature involves hashing the
document and then encrypting the result with the sender’s private key.
Any trading partner can verify the signature by decrypting it with the
sender’s public key, recomputing the hash of the document, and then
comparing the two hash values for equality.

DISA Data Interchange Standards Association: Secretariat for ASC X.12.

EBCDIC Extended Binary-Coded Decimal Interchange Code; An IBM code for
representing characters as numbers. Although widely used on large IBM
computers, most other computers, including PCs and UNIX workstations,
use ASCII codes.

EC Electronic Commerce. The use of information technologies to conduct
business between trading partners. Electronic Commerce technologies
include those which exchange data (EDI, email), access data (shared
databases, bulletin boards), and automatically capture data (bar coding).

TDCompress User Guide

 - 10-120 -

EDI Electronic Data Interchange: The inter-organizational, computer-to-
computer exchange of business documentation in a standard, machine-
processable format.

EDI data element The smallest meaningful piece of information in an EDI transaction. The
data element equivalent to a field in a database or paper document that
condenses lengthy descriptive information into short code. Data
segments are made up of data elements.

EDI data segment A data segment is made up of data elements, which occur in a specific
sequence as defined by an EDI standard (X.12). A data segment is the
equivalent to a record in a database or paper document.

EDIFACT United Nations Electronic Data Interchange for Administration,
Commerce, and Transport; International standard set by the UN and
administered in the U.S. by DISA. This standard has been widely
implemented in western Europe.

EDI name A unique identifier used by communications software and public
networks for addressing and routing files.

encryption The process of transforming plaintext into ciphertext.

hub A large company with a highly-developed EDI program that actively
encourages EDI implementation and development among its vendors
and other business partners.

key Cryptographic key. A parameter that determines the transformation from
plaintext to ciphertext or vice versa. For example, a DES key is a 64-bit

parameter consisting of 56 key bits and 8 bits, which may be used for
odd parity.

key interval The time period for which a key will be active.

MAC Message Authentication Code. A cryptographically computed value that
is the result of passing text or numeric data through the authentication
algorithm using a specific key.

passphrase A string of 64 characters used to encrypt private keys. Passphrases are
randomly generated during the key generation process. They may be
stored with the private key or written to a separate file when the
TDManager run-time files are imported.

plaintext Unencrypted data; intelligible data that can be directly acted upon
without decryption.

TDCompress User Guide

 - 10-121 -

private key The mathematical value of an asymmetric key pair that is not shared with
trading partners. The private key works in conjunction with the public key
to encrypt and decrypt data. For example, when the private key is used
to encrypt data, only the public key can successfully decrypt that data.

public key The mathematical value of an asymmetric key pair that is shared with
trading partners. The public key works in conjunction with the private key
to encrypt and decrypt data. For example, when the public key is used to
encrypt data, only the private key can successfully decrypt that data.

RC2 A variable key size block cipher, designed to be a replacement for DES.

receiver The receiving trading partner, system or process that is the destination of
transmitted data.

secret key The value used in a symmetric encryption algorithm to both encrypt and
decrypt data. Secret keys must be known only by the trading partners
authorized to access the encrypted data.

sender The sending trading partner, system or process that is the originator of
transmitted data.

session key A random, one-time secret key.

symmetric algorithm An encryption algorithm that uses the same secret key to both encrypt
and decrypt data.

trading partner A supplier, customer, service provider, or other party with whom
business documents are routinely exchanged.

VAN Value Added Network; The source or service that resolves the issues
resulting from communicating with a number of different trading partners.
They provide EDI communication skills, expertise, and equipment
necessary to communicate electronically.

TDCompress User Guide

 - 122 -

Index

A
ACF2..4-34
API..6-55, 10-89
ASC X12.58 standards

supported by Comm-Press20002-12
ASCII ...6-46

translation to EBCDIC.....................................1-8
Authentication

using digital signatures..................................2-17
AUTOEXT..3-24

B
batch key generation ..4-32
bind the plan...6-43
BSAFE return codes...10-112

C
certificate file ...4-33
Comm-Press2000

benefits ...1-5
upgrading to new versions1-9

compprog...10-89
Configuration

run-time options..1-8
Conversion ASCII/EBCDIC10-93
CRLF

run-time option..1-8

D
DATAIN..10-84
DATAIN DD...6-45, 6-46
DATAOT ..10-84, 10-85
DATAOT DD...6-45, 6-46
DE3 ..2-18
DELIMIT ...2-13, 3-25
Delimiters...1-9
DES ...2-18, 4-34
digital signature...2-17, 4-34
digital signatures ..2-14
DIRNAME..8-65, 9-76
Distinguished Name ...4-33
DOS...8-63, 8-64
DOS/Windows ...8-63
dynamic allocation ...6-48

E
easyacc.ini ...4-32
EBCDIC

translation to ASCII ...1-8
EDI...3-26, 8-73

security options...2-12
standard formats supported.............................1-6

EDIFACT...8-73
Encryption algorithms ..1-6
error messages ..10-95
Example Non-EDI...5-41, 8-72
Example X12-EDI..8-70
Execution options

KEEPSIGS...2-12
listing ..2-12

Extended Security Option..1-5
API ... 10-89

F
Filtering..2-17

G
GENKEYS ..4-32, 8-68
GENKEYS JCL ..6-53, 10-86
GS segment ...6-53, 8-70

H
hash ..2-17

I
IMPORT...10-83
Installation

upgrading to new versions1-9
IV 3-26
IV= ..2-18

J
JCL...6-43
Job Control Language ..1-9

K
KEEPSIGS...2-13
KEY ..3-26
Key generation

methods..4-32
KEY= ..2-18

L
Licenses

software ..1-6
load modules ..6-44
Log files

created by Comm-Press2000........................2-12
LOGPATH...2-13, 3-27

TDCompress User Guide

 - 123 -

M
MD5

hashing algorithm...2-17
message digest..2-17
MVS Installation

JCL to unload tape..6-43
using a tape cartridge.....................................6-43
using diskette or CD-ROM6-42

MVS-DB2..6-43

N
NOINFO ..8-65, 9-76
non-EDI data...6-54, 8-72

O
Operating Systems

supported by Comm-Press20001-7
transferring files between................................1-9

OS/2 ...8-64
OS/400 ..10-82, 10-83

P
PARM field..6-45
passphrase... 4-34, 6-55, 8-72
PC file ..8-68
PC/Windows ..8-65
PDS... 6-42, 6-46, 6-56
PF..3-28
Public/private keys

key technology..2-14
technology overview......................................2-15

R
RACF...4-34
RC2 ...2-18, 4-34
RECEIVER ..2-13, 3-28
RECURSE..8-65
RSTLIB..10-82
Runtime files ..4-32
Run-time files

private key ...4-33
Run-time files

symmetric key ...4-34
Run-time files

lookup table ...4-34
Run-time files

participant table...4-35
Run-time options

CRLF ..1-8, 1-9

RUNTIMEPATH............................... 2-13, 3-28, 4-34

S
SAVLIB ...10-82
SECFILE .. 2-13, 3-29, 5-39
SECFILE keywords

MVS example user-defined headers5-37
PC example user-defined headers................5-39

secret key..2-19
Secret keys...7-60

algorithms ..2-15
SECURE ..2-13
TDManager ..4-33
SECUREONLY ...2-13
Security options

EDI ..2-12
SELECT ...3-29
SENDER ...2-14, 3-29
signature ...6-45
Software

licenses ...1-6
SQL..2-14, 3-30
SQL parameter ...6-43
Symmetric keys..2-15

T
TRANSID.................................2-13, 2-14, 3-30, 5-40
translation table...6-56, 10-88
TSO RECEIVE ..6-42
TSO TRANSMIT...6-42

U
UCS EDI data...8-73
UNIX..9-76
UNIX/AIX...9-77
UNTDI...8-73
UNWRAP..2-14
USEGS...2-14

V
VMS.. 7-58, 7-59, 7-60

W
Windows ..8-64

X
X12...8-73
X12 data..6-53, 8-70

